Goto

Collaborating Authors

 Sun, Fei


Reinforced Lifelong Editing for Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time. Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates. However, they face significant challenges in lifelong editing due to their incompatibility with LLM parameters that dynamically change during the editing process. To address this, we observed that hypernetwork-based lifelong editing aligns with reinforcement learning modeling and proposed RLEdit, an RL-based editing method. By treating editing losses as rewards and optimizing hypernetwork parameters at the full knowledge sequence level, we enable it to precisely capture LLM changes and generate appropriate parameter updates. Our extensive empirical evaluation across several LLMs demonstrates that RLEdit outperforms existing methods in lifelong editing with superior effectiveness and efficiency, achieving a 59.24% improvement while requiring only 2.11% of the time compared to most approaches. Our code is available at: https://github.com/zhrli324/RLEdit.


The Mirage of Model Editing: Revisiting Evaluation in the Wild

arXiv.org Artificial Intelligence

Despite near-perfect results in artificial evaluations, the effectiveness of model editing in real-world applications remains unexplored. To bridge this gap, we propose to study model editing in question answering (QA) by establishing a rigorous evaluation practice to assess the effectiveness of editing methods in correcting LLMs' errors. It consists of QAEdit, a new benchmark derived from popular QA datasets, and a standardized evaluation framework. Our single editing experiments indicate that current editing methods perform substantially worse than previously reported (38.5% vs. ~96%). Through module analysis and controlled experiments, we demonstrate that this performance decline stems from issues in evaluation practices of prior editing research. One key issue is the inappropriate use of teacher forcing in testing prevents error propagation by feeding ground truth tokens (inaccessible in real-world scenarios) as input. Furthermore, we simulate real-world deployment by sequential editing, revealing that current approaches fail drastically with only 1000 edits. Our analysis provides a fundamental reexamination of both the real-world applicability of existing model editing methods and their evaluation practices, and establishes a rigorous evaluation framework with key insights to advance reliable and practical model editing research.


Fact-Level Confidence Calibration and Self-Correction

arXiv.org Artificial Intelligence

Confidence calibration in LLMs, i.e., aligning their self-assessed confidence with the actual accuracy of their responses, enabling them to self-evaluate the correctness of their outputs. However, current calibration methods for LLMs typically estimate two scalars to represent overall response confidence and correctness, which is inadequate for long-form generation where the response includes multiple atomic facts and may be partially confident and correct. These methods also overlook the relevance of each fact to the query. To address these challenges, we propose a Fact-Level Calibration framework that operates at a finer granularity, calibrating confidence to relevance-weighted correctness at the fact level. Furthermore, comprehensive analysis under the framework inspired the development of Confidence-Guided Fact-level Self-Correction ($\textbf{ConFix}$), which uses high-confidence facts within a response as additional knowledge to improve low-confidence ones. Extensive experiments across four datasets and six models demonstrate that ConFix effectively mitigates hallucinations without requiring external knowledge sources such as retrieval systems.


Game-theoretic LLM: Agent Workflow for Negotiation Games

arXiv.org Artificial Intelligence

This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at \url{https://github.com/Wenyueh/game_theory}.


KAN-AD: Time Series Anomaly Detection with Kolmogorov-Arnold Networks

arXiv.org Artificial Intelligence

Time series anomaly detection (TSAD) has become an essential component of large-scale cloud services and web systems because it can promptly identify anomalies, providing early warnings to prevent greater losses. Deep learning-based forecasting methods have become very popular in TSAD due to their powerful learning capabilities. However, accurate predictions don't necessarily lead to better anomaly detection. Due to the common occurrence of noise, i.e., local peaks and drops in time series, existing black-box learning methods can easily learn these unintended patterns, significantly affecting anomaly detection performance. Kolmogorov-Arnold Networks (KAN) offers a potential solution by decomposing complex temporal sequences into a combination of multiple univariate functions, making the training process more controllable. However, KAN optimizes univariate functions using spline functions, which are also susceptible to the influence of local anomalies. To address this issue, we present KAN-AD, which leverages the Fourier series to emphasize global temporal patterns, thereby mitigating the influence of local peaks and drops. KAN-AD improves both effectiveness and efficiency by transforming the existing black-box learning approach into learning the weights preceding univariate functions. Experimental results show that, compared to the current state-of-the-art, we achieved an accuracy increase of 15% while boosting inference speed by 55 times.


Pruning Foundation Models for High Accuracy without Retraining

arXiv.org Artificial Intelligence

Despite the superior performance, it is challenging to deploy foundation models or large language models (LLMs) due to their massive parameters and computations. While pruning is a promising technique to reduce model size and accelerate the inference, the traditional pruning techniques can hardly be applied for LLMs as they need to finetune the model on the full dataset with multiple epochs consuming massive data and hardware resources. To deal with this problem, post-training pruning methods are proposed to prune LLMs in one-shot without retraining. However, their accuracy after pruning may suffer from certain performance degradation due to the lack of retraining with massive data. To address this issue, in this paper, we first formulate the post-training problem for layer-wise LLM compression to simultaneously prune multiple weights in LLMs. Next, we provide an optimal solution for this problem and design our post-training pruning algorithm for both unstructured and semi-structured sparsity. Our extensive experiments demonstrate the superior performance of the proposed methods in comparison to SOTA baselines across various LLM families including transformer-based LLMs and Mamba-based LLMs. Code link: https://github.com/piuzha/APT


MITA: Bridging the Gap between Model and Data for Test-time Adaptation

arXiv.org Artificial Intelligence

Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models. However, existing mainstream TTA methods, predominantly operating at batch level, often exhibit suboptimal performance in complex real-world scenarios, particularly when confronting outliers or mixed distributions. This phenomenon stems from a pronounced over-reliance on statistical patterns over the distinct characteristics of individual instances, resulting in a divergence between the distribution captured by the model and data characteristics. To address this challenge, we propose Meet-In-The-Middle based Test-Time Adaptation ($\textbf{MITA}$), which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions, thereby meeting in the middle. MITA pioneers a significant departure from traditional approaches that focus solely on aligning the model to the data, facilitating a more effective bridging of the gap between model's distribution and data characteristics. Comprehensive experiments with MITA across three distinct scenarios (Outlier, Mixture, and Pure) demonstrate its superior performance over SOTA methods, highlighting its potential to significantly enhance generalizability in practical applications.


When to Trust LLMs: Aligning Confidence with Response Quality

arXiv.org Artificial Intelligence

Despite the success of large language models (LLMs) in natural language generation, much evidence shows that LLMs may produce incorrect or nonsensical text. This limitation highlights the importance of discerning when to trust LLMs, especially in safety-critical domains. Existing methods often express reliability by confidence level, however, their effectiveness is limited by the lack of objective guidance. To address this, we propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD), which leverages reinforcement learning guided by a tailored dual-component reward function. This function integrates quality reward and order-preserving alignment reward functions. Specifically, the order-preserving reward incentivizes the model to verbalize greater confidence for responses of higher quality to align the order of confidence and quality. Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy, without causing over-cautious. Furthermore, the aligned confidence provided by CONQORD informs when to trust LLMs, and acts as a determinant for initiating the retrieval process of external knowledge. Aligning confidence with response quality ensures more transparent and reliable responses, providing better trustworthiness.


The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse

arXiv.org Artificial Intelligence

Although model editing has shown promise in revising knowledge in Large Language Models (LLMs), its impact on the inherent capabilities of LLMs is often overlooked. In this work, we reveal a critical phenomenon: even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks. However, benchmarking LLMs after each edit, while necessary to prevent such collapses, is impractically time-consuming and resource-intensive. To mitigate this, we propose using perplexity as a surrogate metric, validated by extensive experiments demonstrating changes in an edited model's perplexity are strongly correlated with its downstream task performances. We further conduct an in-depth study on sequential editing, a practical setting for real-world scenarios, across various editing methods and LLMs, focusing on hard cases from our previous single edit studies. The results indicate that nearly all examined editing methods result in model collapse after only few edits. To facilitate further research, we have utilized GPT-3.5 to develop a new dataset, HardEdit, based on those hard cases. This dataset aims to establish the foundation for pioneering research in reliable model editing and the mechanisms underlying editing-induced model collapse. We hope this work can draw the community's attention to the potential risks inherent in model editing practices.


Is Flash Attention Stable?

arXiv.org Artificial Intelligence

Training large-scale machine learning models poses distinct system challenges, given both the size and complexity of today's workloads. Recently, many organizations training state-of-the-art Generative AI models have reported cases of instability during training, often taking the form of loss spikes. Numeric deviation has emerged as a potential cause of this training instability, although quantifying this is especially challenging given the costly nature of training runs. In this work, we develop a principled approach to understanding the effects of numeric deviation, and construct proxies to put observations into context when downstream effects are difficult to quantify. As a case study, we apply this framework to analyze the widely-adopted Flash Attention optimization. We find that Flash Attention sees roughly an order of magnitude more numeric deviation as compared to Baseline Attention at BF16 when measured during an isolated forward pass. We then use a data-driven analysis based on the Wasserstein Distance to provide upper bounds on how this numeric deviation impacts model weights during training, finding that the numerical deviation present in Flash Attention is 2-5 times less significant than low-precision training.