Sue, Guo Ning
Decentralized Navigation of a Cable-Towed Load using Quadrupedal Robot Team via MARL
Chen, Wen-Tse, Nguyen, Minh, Li, Zhongyu, Sue, Guo Ning, Sreenath, Koushil
This work addresses the challenge of enabling a team of quadrupedal robots to collaboratively tow a cable-connected load through cluttered and unstructured environments while avoiding obstacles. Leveraging cables allows the multi-robot system to navigate narrow spaces by maintaining slack when necessary. However, this introduces hybrid physical interactions due to alternating taut and slack states, with computational complexity that scales exponentially as the number of agents increases. To tackle these challenges, we developed a scalable and decentralized system capable of dynamically coordinating a variable number of quadrupedal robots while managing the hybrid physical interactions inherent in the load-towing task. At the core of this system is a novel multi-agent reinforcement learning (MARL)-based planner, designed for decentralized coordination. The MARL-based planner is trained using a centralized training with decentralized execution (CTDE) framework, enabling each robot to make decisions autonomously using only local (ego) observations. To accelerate learning and ensure effective collaboration across varying team sizes, we introduce a tailored training curriculum for MARL. Experimental results highlight the flexibility and scalability of the framework, demonstrating successful deployment with one to four robots in real-world scenarios and up to twelve robots in simulation. The decentralized planner maintains consistent inference times, regardless of the team size. Additionally, the proposed system demonstrates robustness to environment perturbations and adaptability to varying load weights. This work represents a step forward in achieving flexible and efficient multi-legged robotic collaboration in complex and real-world environments.
Q-learning-based Model-free Safety Filter
Sue, Guo Ning, Choudhary, Yogita, Desatnik, Richard, Majidi, Carmel, Dolan, John, Shi, Guanya
Ensuring safety via safety filters in real-world robotics presents significant challenges, particularly when the system dynamics is complex or unavailable. To handle this issue, learning-based safety filters recently gained popularity, which can be classified as model-based and model-free methods. Existing model-based approaches requires various assumptions on system model (e.g., control-affine), which limits their application in complex systems, and existing model-free approaches need substantial modifications to standard RL algorithms and lack versatility. This paper proposes a simple, plugin-and-play, and effective model-free safety filter learning framework. We introduce a novel reward formulation and use Q-learning to learn Q-value functions to safeguard arbitrary task specific nominal policies via filtering out their potentially unsafe actions. The threshold used in the filtering process is supported by our theoretical analysis. Due to its model-free nature and simplicity, our framework can be seamlessly integrated with various RL algorithms. We validate the proposed approach through simulations on double integrator and Dubin's car systems and demonstrate its effectiveness in real-world experiments with a soft robotic limb.