Goto

Collaborating Authors

 Su, Li


BrainNet-MoE: Brain-Inspired Mixture-of-Experts Learning for Neurological Disease Identification

arXiv.org Artificial Intelligence

The Lewy body dementia (LBD) is the second most common neurodegenerative dementia after Alzheimer's disease (AD). Early differentiation between AD and LBD is crucial because they require different treatment approaches, but this is challenging due to significant clinical overlap, heterogeneity, complex pathogenesis, and the rarity of LBD. While recent advances in artificial intelligence (AI) demonstrate powerful learning capabilities and offer new hope for accurate diagnosis, existing methods primary focus on designing "neurallevel networks". Our work represents a pioneering effort in modeling systemlevel artificial neural network called BrainNet-MoE for brain modeling and diagnosing. Inspired by the brain's hierarchical organization of bottom-up sensory integration and top-down control, we design a set of disease-specific expert groups to process brain sub-network under different condition, A disease gate mechanism guides the specialization of expert groups, while a transformer layer enables communication between all sub-networks, generating a comprehensive whole-brain representation for downstream disease classification. Experimental results show superior classification accuracy with interpretable insights into how brain sub-networks contribute to different neurodegenerative conditions. Keywords: Brain inspired AI, Mix of Experts, Dementia.


Query-centric Audio-Visual Cognition Network for Moment Retrieval, Segmentation and Step-Captioning

arXiv.org Artificial Intelligence

Video has emerged as a favored multimedia format on the internet. To better gain video contents, a new topic HIREST is presented, including video retrieval, moment retrieval, moment segmentation, and step-captioning. The pioneering work chooses the pre-trained CLIP-based model for video retrieval, and leverages it as a feature extractor for other three challenging tasks solved in a multi-task learning paradigm. Nevertheless, this work struggles to learn the comprehensive cognition of user-preferred content, due to disregarding the hierarchies and association relations across modalities. In this paper, guided by the shallow-to-deep principle, we propose a query-centric audio-visual cognition (QUAG) network to construct a reliable multi-modal representation for moment retrieval, segmentation and step-captioning. Specifically, we first design the modality-synergistic perception to obtain rich audio-visual content, by modeling global contrastive alignment and local fine-grained interaction between visual and audio modalities. Then, we devise the query-centric cognition that uses the deep-level query to perform the temporal-channel filtration on the shallow-level audio-visual representation. This can cognize user-preferred content and thus attain a query-centric audio-visual representation for three tasks. Extensive experiments show QUAG achieves the SOTA results on HIREST. Further, we test QUAG on the query-based video summarization task and verify its good generalization.


MOSA: Music Motion with Semantic Annotation Dataset for Cross-Modal Music Processing

arXiv.org Artificial Intelligence

In cross-modal music processing, translation between visual, auditory, and semantic content opens up new possibilities as well as challenges. The construction of such a transformative scheme depends upon a benchmark corpus with a comprehensive data infrastructure. In particular, the assembly of a large-scale cross-modal dataset presents major challenges. In this paper, we present the MOSA (Music mOtion with Semantic Annotation) dataset, which contains high quality 3-D motion capture data, aligned audio recordings, and note-by-note semantic annotations of pitch, beat, phrase, dynamic, articulation, and harmony for 742 professional music performances by 23 professional musicians, comprising more than 30 hours and 570 K notes of data. To our knowledge, this is the largest cross-modal music dataset with note-level annotations to date. To demonstrate the usage of the MOSA dataset, we present several innovative cross-modal music information retrieval (MIR) and musical content generation tasks, including the detection of beats, downbeats, phrase, and expressive contents from audio, video and motion data, and the generation of musicians' body motion from given music audio. The dataset and codes are available alongside this publication (https://github.com/yufenhuang/MOSA-Music-mOtion-and-Semantic-Annotation-dataset).


Enhancing Motor Imagery Decoding in Brain Computer Interfaces using Riemann Tangent Space Mapping and Cross Frequency Coupling

arXiv.org Artificial Intelligence

Objective: Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs), aiming to decoding motor intentions from electroencephalogram (EEG) signals. Method: Drawing inspiration from Riemannian geometry and Cross-Frequency Coupling (CFC), this paper introduces a novel approach termed Riemann Tangent Space Mapping using Dichotomous Filter Bank with Convolutional Neural Network (DFBRTS) to enhance the representation quality and decoding capability pertaining to MI features. DFBRTS first initiates the process by meticulously filtering EEG signals through a Dichotomous Filter Bank, structured in the fashion of a complete binary tree. Subsequently, it employs Riemann Tangent Space Mapping to extract salient EEG signal features within each sub-band. Finally, a lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss. To validate the efficacy, extensive experiments were conducted using DFBRTS on two well-established benchmark datasets: the BCI competition IV 2a (BCIC-IV-2a) dataset and the OpenBMI dataset. The performance of DFBRTS was benchmarked against several state-of-the-art MI decoding methods, alongside other Riemannian geometry-based MI decoding approaches. Results: DFBRTS significantly outperforms other MI decoding algorithms on both datasets, achieving a remarkable classification accuracy of 78.16% for four-class and 71.58% for two-class hold-out classification, as compared to the existing benchmarks.


Self-supervised Cross-view Representation Reconstruction for Change Captioning

arXiv.org Artificial Intelligence

Change captioning aims to describe the difference between a pair of similar images. Its key challenge is how to learn a stable difference representation under pseudo changes caused by viewpoint change. In this paper, we address this by proposing a self-supervised cross-view representation reconstruction (SCORER) network. Concretely, we first design a multi-head token-wise matching to model relationships between cross-view features from similar/dissimilar images. Then, by maximizing cross-view contrastive alignment of two similar images, SCORER learns two view-invariant image representations in a self-supervised way. Based on these, we reconstruct the representations of unchanged objects by cross-attention, thus learning a stable difference representation for caption generation. Further, we devise a cross-modal backward reasoning to improve the quality of caption. This module reversely models a ``hallucination'' representation with the caption and ``before'' representation. By pushing it closer to the ``after'' representation, we enforce the caption to be informative about the difference in a self-supervised manner. Extensive experiments show our method achieves the state-of-the-art results on four datasets. The code is available at https://github.com/tuyunbin/SCORER.


A Phoneme-Informed Neural Network Model for Note-Level Singing Transcription

arXiv.org Artificial Intelligence

Note-level automatic music transcription is one of the most representative music information retrieval (MIR) tasks and has been studied for various instruments to understand music. However, due to the lack of high-quality labeled data, transcription of many instruments is still a challenging task. In particular, in the case of singing, it is difficult to find accurate notes due to its expressiveness in pitch, timbre, and dynamics. In this paper, we propose a method of finding note onsets of singing voice more accurately by leveraging the linguistic characteristics of singing, which are not seen in other instruments. The proposed model uses mel-scaled spectrogram and phonetic posteriorgram (PPG), a frame-wise likelihood of phoneme, as an input of the onset detection network while PPG is generated by the pre-trained network with singing and speech data. To verify how linguistic features affect onset detection, we compare the evaluation results through the dataset with different languages and divide onset types for detailed analysis. Our approach substantially improves the performance of singing transcription and therefore emphasizes the importance of linguistic features in singing analysis.


Neighborhood Contrastive Transformer for Change Captioning

arXiv.org Artificial Intelligence

Change captioning is to describe the semantic change between a pair of similar images in natural language. It is more challenging than general image captioning, because it requires capturing fine-grained change information while being immune to irrelevant viewpoint changes, and solving syntax ambiguity in change descriptions. In this paper, we propose a neighborhood contrastive transformer to improve the model's perceiving ability for various changes under different scenes and cognition ability for complex syntax structure. Concretely, we first design a neighboring feature aggregating to integrate neighboring context into each feature, which helps quickly locate the inconspicuous changes under the guidance of conspicuous referents. Then, we devise a common feature distilling to compare two images at neighborhood level and extract common properties from each image, so as to learn effective contrastive information between them. Finally, we introduce the explicit dependencies between words to calibrate the transformer decoder, which helps better understand complex syntax structure during training. Extensive experimental results demonstrate that the proposed method achieves the state-of-the-art performance on three public datasets with different change scenarios. The code is available at https://github.com/tuyunbin/NCT.


ReAssigner: A Plug-and-Play Virtual Machine Scheduling Intensifier for Heterogeneous Requests

arXiv.org Artificial Intelligence

With the rapid development of cloud computing, virtual machine scheduling has become one of the most important but challenging issues for the cloud computing community, especially for practical heterogeneous request sequences. By analyzing the impact of request heterogeneity on some popular heuristic schedulers, it can be found that existing scheduling algorithms can not handle the request heterogeneity properly and efficiently. In this paper, a plug-and-play virtual machine scheduling intensifier, called Resource Assigner (ReAssigner), is proposed to enhance the scheduling efficiency of any given scheduler for heterogeneous requests. The key idea of ReAssigner is to pre-assign roles to physical resources and let resources of the same role form a virtual cluster to handle homogeneous requests. ReAssigner can cooperate with arbitrary schedulers by restricting their scheduling space to virtual clusters. With evaluations on the real dataset from Huawei Cloud, the proposed ReAssigner achieves significant scheduling performance improvement compared with some state-of-the-art scheduling methods.


Omnizart: A General Toolbox for Automatic Music Transcription

arXiv.org Artificial Intelligence

We present and release Omnizart, a new Python library that provides a streamlined solution to automatic music transcription (AMT). Omnizart encompasses modules that construct the life-cycle of deep learning-based AMT, and is designed for ease of use with a compact command-line interface. To the best of our knowledge, Omnizart is the first transcription toolkit which offers models covering a wide class of instruments ranging from solo, instrument ensembles, percussion instruments to vocal, as well as models for chord recognition and beat/downbeat tracking, two music information retrieval (MIR) tasks highly related to AMT.


A Human-Computer Duet System for Music Performance

arXiv.org Artificial Intelligence

Virtual musicians have become a remarkable phenomenon in the contemporary multimedia arts. However, most of the virtual musicians nowadays have not been endowed with abilities to create their own behaviors, or to perform music with human musicians. In this paper, we firstly create a virtual violinist, who can collaborate with a human pianist to perform chamber music automatically without any intervention. The system incorporates the techniques from various fields, including real-time music tracking, pose estimation, and body movement generation. In our system, the virtual musician's behavior is generated based on the given music audio alone, and such a system results in a low-cost, efficient and scalable way to produce human and virtual musicians' co-performance. The proposed system has been validated in public concerts. Objective quality assessment approaches and possible ways to systematically improve the system are also discussed.