Strisciuglio, Nicola
Not Only Text: Exploring Compositionality of Visual Representations in Vision-Language Models
Berasi, Davide, Farina, Matteo, Mancini, Massimiliano, Ricci, Elisa, Strisciuglio, Nicola
Vision-Language Models (VLMs) learn a shared feature space for text and images, enabling the comparison of inputs of different modalities. While prior works demonstrated that VLMs organize natural language representations into regular structures encoding composite meanings, it remains unclear if compositional patterns also emerge in the visual embedding space. In this work, we investigate compositionality in the image domain, where the analysis of compositional properties is challenged by noise and sparsity of visual data. We address these problems and propose a framework, called Geodesically Decomposable Embeddings (GDE), that approximates image representations with geometry-aware compositional structures in the latent space. We demonstrate that visual embeddings of pre-trained VLMs exhibit a compositional arrangement, and evaluate the effectiveness of this property in the tasks of compositional classification and group robustness. GDE achieves stronger performance in compositional classification compared to its counterpart method that assumes linear geometry of the latent space. Notably, it is particularly effective for group robustness, where we achieve higher results than task-specific solutions. Our results indicate that VLMs can automatically develop a human-like form of compositional reasoning in the visual domain, making their underlying processes more interpretable. Code is available at https://github.com/BerasiDavide/vlm_image_compositionality.
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Wu, Boqian, Xiao, Qiao, Wang, Shunxin, Strisciuglio, Nicola, Pechenizkiy, Mykola, van Keulen, Maurice, Mocanu, Decebal Constantin, Mocanu, Elena
It is generally perceived that Dynamic Sparse Training opens the door to a new era of scalability and efficiency for artificial neural networks at, perhaps, some costs in accuracy performance for the classification task. At the same time, Dense Training is widely accepted as being the "de facto" approach to train artificial neural networks if one would like to maximize their robustness against image corruption. In this paper, we question this general practice. Consequently, we claim that, contrary to what is commonly thought, the Dynamic Sparse Training methods can consistently outperform Dense Training in terms of robustness accuracy, particularly if the efficiency aspect is not considered as a main objective (i.e., sparsity levels between 10% and up to 50%), without adding (or even reducing) resource cost. We validate our claim on two types of data, images and videos, using several traditional and modern deep learning architectures for computer vision and three widely studied Dynamic Sparse Training algorithms. Our findings reveal a new yet-unknown benefit of Dynamic Sparse Training and open new possibilities in improving deep learning robustness beyond the current state of the art.
Fourier-basis Functions to Bridge Augmentation Gap: Rethinking Frequency Augmentation in Image Classification
Vaish, Puru, Wang, Shunxin, Strisciuglio, Nicola
Computer vision models normally witness degraded performance when deployed in real-world scenarios, due to unexpected changes in inputs that were not accounted for during training. Data augmentation is commonly used to address this issue, as it aims to increase data variety and reduce the distribution gap between training and test data. However, common visual augmentations might not guarantee extensive robustness of computer vision models. In this paper, we propose Auxiliary Fourier-basis Augmentation (AFA), a complementary technique targeting augmentation in the frequency domain and filling the augmentation gap left by visual augmentations. We demonstrate the utility of augmentation via Fourier-basis additive noise in a straightforward and efficient adversarial setting. Our results show that AFA benefits the robustness of models against common corruptions, OOD generalization, and consistency of performance of models against increasing perturbations, with negligible deficit to the standard performance of models. It can be seamlessly integrated with other augmentation techniques to further boost performance. Code and models can be found at: https://github.com/nis-research/afa-augment
CAST: Clustering Self-Attention using Surrogate Tokens for Efficient Transformers
van Engelenhoven, Adjorn, Strisciuglio, Nicola, Talavera, Estefanía
The Transformer architecture has shown to be a powerful tool for a wide range of tasks. It is based on the self-attention mechanism, which is an inherently computationally expensive operation with quadratic computational complexity: memory usage and compute time increase quadratically with the length of the input sequences, thus limiting the application of Transformers. In this work, we propose a novel Clustering self-Attention mechanism using Surrogate Tokens (CAST), to optimize the attention computation and achieve efficient transformers. CAST utilizes learnable surrogate tokens to construct a cluster affinity matrix, used to cluster the input sequence and generate novel cluster summaries. The self-attention from within each cluster is then combined with the cluster summaries of other clusters, enabling information flow across the entire input sequence. CAST improves efficiency by reducing the complexity from $O(N^2)$ to $O(\alpha N)$ where N is the sequence length, and {\alpha} is constant according to the number of clusters and samples per cluster. We show that CAST performs better than or comparable to the baseline Transformers on long-range sequence modeling tasks, while also achieving higher results on time and memory efficiency than other efficient transformers.
Regressing Transformers for Data-efficient Visual Place Recognition
Leyva-Vallina, María, Strisciuglio, Nicola, Petkov, Nicolai
Visual place recognition is a critical task in computer vision, especially for localization and navigation systems. Existing methods often rely on contrastive learning: image descriptors are trained to have small distance for similar images and larger distance for dissimilar ones in a latent space. However, this approach struggles to ensure accurate distance-based image similarity representation, particularly when training with binary pairwise labels, and complex re-ranking strategies are required. This work introduces a fresh perspective by framing place recognition as a regression problem, using camera field-of-view overlap as similarity ground truth for learning. By optimizing image descriptors to align directly with graded similarity labels, this approach enhances ranking capabilities without expensive re-ranking, offering data-efficient training and strong generalization across several benchmark datasets.
What do neural networks learn in image classification? A frequency shortcut perspective
Wang, Shunxin, Veldhuis, Raymond, Brune, Christoph, Strisciuglio, Nicola
Frequency analysis is useful for understanding the mechanisms of representation learning in neural networks (NNs). Most research in this area focuses on the learning dynamics of NNs for regression tasks, while little for classification. This study empirically investigates the latter and expands the understanding of frequency shortcuts. First, we perform experiments on synthetic datasets, designed to have a bias in different frequency bands. Our results demonstrate that NNs tend to find simple solutions for classification, and what they learn first during training depends on the most distinctive frequency characteristics, which can be either low- or high-frequencies. Second, we confirm this phenomenon on natural images. We propose a metric to measure class-wise frequency characteristics and a method to identify frequency shortcuts. The results show that frequency shortcuts can be texture-based or shape-based, depending on what best simplifies the objective. Third, we validate the transferability of frequency shortcuts on out-of-distribution (OOD) test sets. Our results suggest that frequency shortcuts can be transferred across datasets and cannot be fully avoided by larger model capacity and data augmentation. We recommend that future research should focus on effective training schemes mitigating frequency shortcut learning.