Goto

Collaborating Authors

 Stoyanovich, Julia


CREDAL: Close Reading of Data Models

arXiv.org Artificial Intelligence

Data models are necessary for the birth of data and of any data-driven system. Indeed, every algorithm, every machine learning model, every statistical model, and every database has an underlying data model without which the system would not be usable. Hence, data models are excellent sites for interrogating the (material, social, political, ...) conditions giving rise to a data system. Towards this, drawing inspiration from literary criticism, we propose to closely read data models in the same spirit as we closely read literary artifacts. Close readings of data models reconnect us with, among other things, the materiality, the genealogies, the techne, the closed nature, and the design of technical systems. While recognizing from literary theory that there is no one correct way to read, it is nonetheless critical to have systematic guidance for those unfamiliar with close readings. This is especially true for those trained in the computing and data sciences, who too often are enculturated to set aside the socio-political aspects of data work. A systematic methodology for reading data models currently does not exist. To fill this gap, we present the CREDAL methodology for close readings of data models. We detail our iterative development process and present results of a qualitative evaluation of CREDAL demonstrating its usability, usefulness, and effectiveness in the critical study of data.


"Would You Want an AI Tutor?" Understanding Stakeholder Perceptions of LLM-based Chatbots in the Classroom

arXiv.org Artificial Intelligence

In recent years, Large Language Models (LLMs) rapidly gained popularity across all parts of society, including education. After initial skepticism and bans, many schools have chosen to embrace this new technology by integrating it into their curricula in the form of virtual tutors and teaching assistants. However, neither the companies developing this technology nor the public institutions involved in its implementation have set up a formal system to collect feedback from the stakeholders impacted by them. In this paper, we argue that understanding the perceptions of those directly affected by LLMS in the classroom, such as students and teachers, as well as those indirectly impacted, like parents and school staff, is essential for ensuring responsible use of AI in this critical domain. Our contributions are two-fold. First, we present results of a literature review focusing on the perceptions of LLM-based chatbots in education. We highlight important gaps in the literature, such as the exclusion of key educational agents (e.g., parents or school administrators) when analyzing the role of stakeholders, and the frequent omission of the learning contexts in which the AI systems are implemented. Thus, we present a taxonomy that organizes existing literature on stakeholder perceptions. Second, we propose the Contextualized Perceptions for the Adoption of Chatbots in Education (Co-PACE) framework, which can be used to systematically elicit perceptions and inform whether and how LLM-based chatbots should be designed, developed, and deployed in the classroom.


Safeguarding Large Language Models in Real-time with Tunable Safety-Performance Trade-offs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have been shown to be susceptible to jailbreak attacks, or adversarial attacks used to illicit high risk behavior from a model. Jailbreaks have been exploited by cybercriminals and blackhat actors to cause significant harm, highlighting the critical need to safeguard widely-deployed models. Safeguarding approaches, which include fine-tuning models or having LLMs "self-reflect", may lengthen the inference time of a model, incur a computational penalty, reduce the semantic fluency of an output, and restrict ``normal'' model behavior. Importantly, these Safety-Performance Trade-offs (SPTs) remain an understudied area. In this work, we introduce a novel safeguard, called SafeNudge, that combines Controlled Text Generation with "nudging", or using text interventions to change the behavior of a model. SafeNudge triggers during text-generation while a jailbreak attack is being executed, and can reduce successful jailbreak attempts by 30% by guiding the LLM towards a safe responses. It adds minimal latency to inference and has a negligible impact on the semantic fluency of outputs. Further, we allow for tunable SPTs. SafeNudge is open-source and available through https://pypi.org/, and is compatible with models loaded with the Hugging Face "transformers" library.


Making Transparency Advocates: An Educational Approach Towards Better Algorithmic Transparency in Practice

arXiv.org Artificial Intelligence

Concerns about the risks and harms posed by artificial intelligence (AI) have resulted in significant study into algorithmic transparency, giving rise to a sub-field known as Explainable AI (XAI). Unfortunately, despite a decade of development in XAI, an existential challenge remains: progress in research has not been fully translated into the actual implementation of algorithmic transparency by organizations. In this work, we test an approach for addressing the challenge by creating transparency advocates, or motivated individuals within organizations who drive a ground-up cultural shift towards improved algorithmic transparency. Over several years, we created an open-source educational workshop on algorithmic transparency and advocacy. We delivered the workshop to professionals across two separate domains to improve their algorithmic transparency literacy and willingness to advocate for change. In the weeks following the workshop, participants applied what they learned, such as speaking up for algorithmic transparency at an organization-wide AI strategy meeting. We also make two broader observations: first, advocacy is not a monolith and can be broken down into different levels. Second, individuals' willingness for advocacy is affected by their professional field. For example, news and media professionals may be more likely to advocate for algorithmic transparency than those working at technology start-ups.


ShaRP: Explaining Rankings with Shapley Values

arXiv.org Artificial Intelligence

Algorithmic decisions in critical domains such as hiring, college admissions, and lending are often based on rankings. Because of the impact these decisions have on individuals, organizations, and population groups, there is a need to understand them: to know whether the decisions are abiding by the law, to help individuals improve their rankings, and to design better ranking procedures. In this paper, we present ShaRP (Shapley for Rankings and Preferences), a framework that explains the contributions of features to different aspects of a ranked outcome, and is based on Shapley values. Using ShaRP, we show that even when the scoring function used by an algorithmic ranker is known and linear, the weight of each feature does not correspond to its Shapley value contribution. The contributions instead depend on the feature distributions, and on the subtle local interactions between the scoring features. ShaRP builds on the Quantitative Input Influence framework, and can compute the contributions of features for multiple Quantities of Interest, including score, rank, pair-wise preference, and top-k. Because it relies on black-box access to the ranker, ShaRP can be used to explain both score-based and learned ranking models. We show results of an extensive experimental validation of ShaRP using real and synthetic datasets, showcasing its usefulness for qualitative analysis.


Fairness in Algorithmic Recourse Through the Lens of Substantive Equality of Opportunity

arXiv.org Artificial Intelligence

Algorithmic recourse -- providing recommendations to those affected negatively by the outcome of an algorithmic system on how they can take action and change that outcome -- has gained attention as a means of giving persons agency in their interactions with artificial intelligence (AI) systems. Recent work has shown that even if an AI decision-making classifier is ``fair'' (according to some reasonable criteria), recourse itself may be unfair due to differences in the initial circumstances of individuals, compounding disparities for marginalized populations and requiring them to exert more effort than others. There is a need to define more methods and metrics for evaluating fairness in recourse that span a range of normative views of the world, and specifically those that take into account time. Time is a critical element in recourse because the longer it takes an individual to act, the more the setting may change due to model or data drift. This paper seeks to close this research gap by proposing two notions of fairness in recourse that are in normative alignment with substantive equality of opportunity, and that consider time. The first considers the (often repeated) effort individuals exert per successful recourse event, and the second considers time per successful recourse event. Building upon an agent-based framework for simulating recourse, this paper demonstrates how much effort is needed to overcome disparities in initial circumstances. We then proposes an intervention to improve the fairness of recourse by rewarding effort, and compare it to existing strategies.


A New Paradigm for Counterfactual Reasoning in Fairness and Recourse

arXiv.org Artificial Intelligence

Counterfactuals and counterfactual reasoning underpin numerous techniques for auditing and understanding artificial intelligence (AI) systems. The traditional paradigm for counterfactual reasoning in this literature is the interventional counterfactual, where hypothetical interventions are imagined and simulated. For this reason, the starting point for causal reasoning about legal protections and demographic data in AI is an imagined intervention on a legally-protected characteristic, such as ethnicity, race, gender, disability, age, etc. We ask, for example, what would have happened had your race been different? An inherent limitation of this paradigm is that some demographic interventions -- like interventions on race -- may not translate into the formalisms of interventional counterfactuals. In this work, we explore a new paradigm based instead on the backtracking counterfactual, where rather than imagine hypothetical interventions on legally-protected characteristics, we imagine alternate initial conditions while holding these characteristics fixed. We ask instead, what would explain a counterfactual outcome for you as you actually are or could be? This alternate framework allows us to address many of the same social concerns, but to do so while asking fundamentally different questions that do not rely on demographic interventions.


A Simple and Practical Method for Reducing the Disparate Impact of Differential Privacy

arXiv.org Artificial Intelligence

Differentially private (DP) mechanisms have been deployed in a variety of high-impact social settings (perhaps most notably by the U.S. Census). Since all DP mechanisms involve adding noise to results of statistical queries, they are expected to impact our ability to accurately analyze and learn from data, in effect trading off privacy with utility. Alarmingly, the impact of DP on utility can vary significantly among different sub-populations. A simple way to reduce this disparity is with stratification. First compute an independent private estimate for each group in the data set (which may be the intersection of several protected classes), then, to compute estimates of global statistics, appropriately recombine these group estimates. Our main observation is that naive stratification often yields high-accuracy estimates of population-level statistics, without the need for additional privacy budget. We support this observation theoretically and empirically. Our theoretical results center on the private mean estimation problem, while our empirical results center on extensive experiments on private data synthesis to demonstrate the effectiveness of stratification on a variety of private mechanisms. Overall, we argue that this straightforward approach provides a strong baseline against which future work on reducing utility disparities of DP mechanisms should be compared.


Setting the Right Expectations: Algorithmic Recourse Over Time

arXiv.org Artificial Intelligence

Algorithmic systems are often called upon to assist in high-stakes decision making. In light of this, algorithmic recourse, the principle wherein individuals should be able to take action against an undesirable outcome made by an algorithmic system, is receiving growing attention. The bulk of the literature on algorithmic recourse to-date focuses primarily on how to provide recourse to a single individual, overlooking a critical element: the effects of a continuously changing context. Disregarding these effects on recourse is a significant oversight, since, in almost all cases, recourse consists of an individual making a first, unfavorable attempt, and then being given an opportunity to make one or several attempts at a later date - when the context might have changed. This can create false expectations, as initial recourse recommendations may become less reliable over time due to model drift and competition for access to the favorable outcome between individuals. In this work we propose an agent-based simulation framework for studying the effects of a continuously changing environment on algorithmic recourse. In particular, we identify two main effects that can alter the reliability of recourse for individuals represented by the agents: (1) competition with other agents acting upon recourse, and (2) competition with new agents entering the environment. Our findings highlight that only a small set of specific parameterizations result in algorithmic recourse that is reliable for agents over time. Consequently, we argue that substantial additional work is needed to understand recourse reliability over time, and to develop recourse methods that reward agents' effort.


The Unbearable Weight of Massive Privilege: Revisiting Bias-Variance Trade-Offs in the Context of Fair Prediction

arXiv.org Artificial Intelligence

In this paper we revisit the bias-variance decomposition of model error from the perspective of designing a fair classifier: we are motivated by the widely held socio-technical belief that noise variance in large datasets in social domains tracks demographic characteristics such as gender, race, disability, etc. We propose a conditional-iid (ciid) model built from group-specific classifiers that seeks to improve on the trade-offs made by a single model (iid setting). We theoretically analyze the bias-variance decomposition of different models in the Gaussian Mixture Model, and then empirically test our setup on the COMPAS and folktables datasets. We instantiate the ciid model with two procedures that improve "fairness" by conditioning out undesirable effects: first, by conditioning directly on sensitive attributes, and second, by clustering samples into groups and conditioning on cluster membership (blind to protected group membership). Our analysis suggests that there might be principled procedures and concrete real-world use cases under which conditional models are preferred, and our striking empirical results strongly indicate that non-iid settings, such as the ciid setting proposed here, might be more suitable for big data applications in social contexts.