Goto

Collaborating Authors

 Spindler, Martin


Adventures in Demand Analysis Using AI

arXiv.org Machine Learning

This paper advances empirical demand analysis by integrating multimodal product representations derived from artificial intelligence (AI). Using a detailed dataset of toy cars on \textit{Amazon.com}, we combine text descriptions, images, and tabular covariates to represent each product using transformer-based embedding models. These embeddings capture nuanced attributes, such as quality, branding, and visual characteristics, that traditional methods often struggle to summarize. Moreover, we fine-tune these embeddings for causal inference tasks. We show that the resulting embeddings substantially improve the predictive accuracy of sales ranks and prices and that they lead to more credible causal estimates of price elasticity. Notably, we uncover strong heterogeneity in price elasticity driven by these product-specific features. Our findings illustrate that AI-driven representations can enrich and modernize empirical demand analysis. The insights generated may also prove valuable for applied causal inference more broadly.


Collusion Detection with Graph Neural Networks

arXiv.org Machine Learning

Collusion is a complex phenomenon in which companies secretly collaborate to engage in fraudulent practices. This paper presents an innovative methodology for detecting and predicting collusion patterns in different national markets using neural networks (NNs) and graph neural networks (GNNs). GNNs are particularly well suited to this task because they can exploit the inherent network structures present in collusion and many other economic problems. Our approach consists of two phases: In Phase I, we develop and train models on individual market datasets from Japan, the United States, two regions in Switzerland, Italy, and Brazil, focusing on predicting collusion in single markets. In Phase II, we extend the models' applicability through zero-shot learning, employing a transfer learning approach that can detect collusion in markets in which training data is unavailable. This phase also incorporates out-of-distribution (OOD) generalization to evaluate the models' performance on unseen datasets from other countries and regions. In our empirical study, we show that GNNs outperform NNs in detecting complex collusive patterns. This research contributes to the ongoing discourse on preventing collusion and optimizing detection methodologies, providing valuable guidance on the use of NNs and GNNs in economic applications to enhance market fairness and economic welfare.


Management Decisions in Manufacturing using Causal Machine Learning -- To Rework, or not to Rework?

arXiv.org Machine Learning

In this paper, we present a data-driven model for estimating optimal rework policies in manufacturing systems. We consider a single production stage within a multistage, lot-based system that allows for optional rework steps. While the rework decision depends on an intermediate state of the lot and system, the final product inspection, and thus the assessment of the actual yield, is delayed until production is complete. Repair steps are applied uniformly to the lot, potentially improving some of the individual items while degrading others. The challenge is thus to balance potential yield improvement with the rework costs incurred. Given the inherently causal nature of this decision problem, we propose a causal model to estimate yield improvement. We apply methods from causal machine learning, in particular double/debiased machine learning (DML) techniques, to estimate conditional treatment effects from data and derive policies for rework decisions. We validate our decision model using real-world data from opto-electronic semiconductor manufacturing, achieving a yield improvement of 2 - 3% during the color-conversion process of white light-emitting diodes (LEDs).


Applied Causal Inference Powered by ML and AI

arXiv.org Machine Learning

This book aims to provide a working introduction to the emerging fusion of modern statistical inference - aka machine learning (ML) or artificial intelligence (AI) - and causal inference methods. The book is aimed at upper level undergraduates and master's-level students as well as doctoral students focusing on applied empirical research. A sufficient background for the core material is one semester of introductory econometrics and one semester of machine learning. We hope the book is also useful to empirical researchers looking to apply modern methods in their work. The book provides an overview of key ideas in both predictive inference and causal inference and shows how predictive tools are key ingredients to answering many causal questions.


Hyperparameter Tuning for Causal Inference with Double Machine Learning: A Simulation Study

arXiv.org Machine Learning

Proper hyperparameter tuning is essential for achieving optimal performance of modern machine learning (ML) methods in predictive tasks. While there is an extensive literature on tuning ML learners for prediction, there is only little guidance available on tuning ML learners for causal machine learning and how to select among different ML learners. In this paper, we empirically assess the relationship between the predictive performance of ML methods and the resulting causal estimation based on the Double Machine Learning (DML) approach by Chernozhukov et al. (2018). DML relies on estimating so-called nuisance parameters by treating them as supervised learning problems and using them as plug-in estimates to solve for the (causal) parameter. We conduct an extensive simulation study using data from the 2019 Atlantic Causal Inference Conference Data Challenge. We provide empirical insights on the role of hyperparameter tuning and other practical decisions for causal estimation with DML. First, we assess the importance of data splitting schemes for tuning ML learners within Double Machine Learning. Second, we investigate how the choice of ML methods and hyperparameters, including recent AutoML frameworks, impacts the estimation performance for a causal parameter of interest. Third, we assess to what extent the choice of a particular causal model, as characterized by incorporated parametric assumptions, can be based on predictive performance metrics.


DoubleMLDeep: Estimation of Causal Effects with Multimodal Data

arXiv.org Artificial Intelligence

This paper explores the use of unstructured, multimodal data, namely text and images, in causal inference and treatment effect estimation. We propose a neural network architecture that is adapted to the double machine learning (DML) framework, specifically the partially linear model. An additional contribution of our paper is a new method to generate a semi-synthetic dataset which can be used to evaluate the performance of causal effect estimation in the presence of text and images as confounders. The proposed methods and architectures are evaluated on the semi-synthetic dataset and compared to standard approaches, highlighting the potential benefit of using text and images directly in causal studies. Our findings have implications for researchers and practitioners in economics, marketing, finance, medicine and data science in general who are interested in estimating causal quantities using non-traditional data.


Causally Learning an Optimal Rework Policy

arXiv.org Artificial Intelligence

In manufacturing, rework refers to an optional step of a production process which aims to eliminate errors or remedy products that do not meet the desired quality standards. Reworking a production lot involves repeating a previous production stage with adjustments to ensure that the final product meets the required specifications. While offering the chance to improve the yield and thus increase the revenue of a production lot, a rework step also incurs additional costs. Additionally, the rework of parts that already meet the target specifications may damage them and decrease the yield. In this paper, we apply double/debiased machine learning (DML) to estimate the conditional treatment effect of a rework step during the color conversion process in opto-electronic semiconductor manufacturing on the final product yield. We utilize the implementation DoubleML to develop policies for the rework of components and estimate their value empirically. From our causal machine learning analysis we derive implications for the coating of monochromatic LEDs with conversion layers.


Label Attention Network for sequential multi-label classification: you were looking at a wrong self-attention

arXiv.org Artificial Intelligence

Most of the available user information can be represented as a sequence of timestamped events. Each event is assigned a set of categorical labels whose future structure is of great interest. For instance, our goal is to predict a group of items in the next customer's purchase or tomorrow's client transactions. This is a multi-label classification problem for sequential data. Modern approaches focus on transformer architecture for sequential data introducing self-attention for the elements in a sequence. In that case, we take into account events' time interactions but lose information on label inter-dependencies. Motivated by this shortcoming, we propose leveraging a self-attention mechanism over labels preceding the predicted step. As our approach is a Label-Attention NETwork, we call it LANET. Experimental evidence suggests that LANET outperforms the established models' performance and greatly captures interconnections between labels. For example, the micro-AUC of our approach is $0.9536$ compared to $0.7501$ for a vanilla transformer. We provide an implementation of LANET to facilitate its wider usage.


DoubleML -- An Object-Oriented Implementation of Double Machine Learning in Python

arXiv.org Machine Learning

DoubleML is an open-source Python library implementing the double machine learning framework of Chernozhukov et al. (2018) for a variety of causal models. It contains functionalities for valid statistical inference on causal parameters when the estimation of nuisance parameters is based on machine learning methods. The object-oriented implementation of DoubleML provides a high flexibility in terms of model specifications and makes it easily extendable. The package is distributed under the MIT license and relies on core libraries from the scientific Python ecosystem: scikit-learn, numpy, pandas, scipy, statsmodels and joblib.


DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R

arXiv.org Machine Learning

Structural equation models provide a quintessential framework for conducting causal inference in statistics, econometrics, machine learning (ML), and other data sciences. The package DoubleML for R (R Core Team, 2020) implements partially linear and interactive structural equation and treatment effect models with high-dimensional confounding variables as considered in Chernozhukov et al. (2018). Estimation and tuning of the machine learning models is based on the powerful functionalities provided by the mlr3 package and the mlr3 ecosystem (Lang et al., 2019). A key element of double machine learning (DML) models are score functions identifying the estimates for the target parameter. These functions play an essential role for valid inference with machine learning methods because they have to satisfy a property called Neyman orthogonality. With the score functions as key elements, DoubleML implements double machine learning in a very general way using object orientation based on the R6 package (Chang, 2020). Currently, DoubleML implements the double / debiased machine learning framework as established in Chernozhukov et al. (2018) for - partially linear regression models (PLR), - partially linear instrumental variable regression models (PLIV), - interactive regression models (IRM), and - interactive instrumental variable regression models (IIVM). The object-oriented implementation of DoubleML is very flexible. The model classes DoubleMLPLR, DoubleMLPLIV, DoubleMLIRM and DoubleIIVM implement the estimation of the nuisance functions via machine learning methods and the computation of the Neyman-orthogonal score function.