Goto

Collaborating Authors

 Song, Mingli


Reinforced Model Merging

arXiv.org Artificial Intelligence

The success of large language models has garnered widespread attention for model merging techniques, especially training-free methods which combine model capabilities within the parameter space. However, two challenges remain: (1) uniform treatment of all parameters leads to performance degradation; (2) search-based algorithms are often inefficient. In this paper, we present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks. These components interact to execute layer-wise merging actions, aiming to search the optimal merging architecture. Notably, RMM operates without any gradient computations on the original models, rendering it feasible for edge devices. Furthermore, by utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times. Extensive experiments demonstrate that RMM achieves state-of-the-art performance across various vision and NLP datasets and effectively overcomes the limitations of the existing baseline methods. Our code is available at https://github.com/WuDiHJQ/Reinforced-Model-Merging.


A Survey of Direct Preference Optimization

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated unprecedented generative capabilities, yet their alignment with human values remains critical for ensuring helpful and harmless deployments. While Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful paradigm for aligning LLMs with human preferences, its reliance on complex reward modeling introduces inherent trade-offs in computational efficiency and training stability. In this context, Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative that directly optimizes LLMs using human preferences, thereby circumventing the need for explicit reward modeling. Owing to its theoretical elegance and computational efficiency, DPO has rapidly attracted substantial research efforts exploring its various implementations and applications. However, this field currently lacks systematic organization and comparative analysis. In this survey, we conduct a comprehensive overview of DPO and introduce a novel taxonomy, categorizing previous works into four key dimensions: data strategy, learning framework, constraint mechanism, and model property. We further present a rigorous empirical analysis of DPO variants across standardized benchmarks. Additionally, we discuss real-world applications, open challenges, and future directions for DPO. This work delivers both a conceptual framework for understanding DPO and practical guidance for practitioners, aiming to advance robust and generalizable alignment paradigms. All collected resources are available and will be continuously updated at https://github.com/liushunyu/awesome-direct-preference-optimization.


SHAPE : Self-Improved Visual Preference Alignment by Iteratively Generating Holistic Winner

arXiv.org Artificial Intelligence

Large Visual Language Models (LVLMs) increasingly rely on preference alignment to ensure reliability, which steers the model behavior via preference fine-tuning on preference data structured as ``image - winner text - loser text'' triplets. However, existing approaches often suffer from limited diversity and high costs associated with human-annotated preference data, hindering LVLMs from fully achieving their intended alignment capabilities. We present \projectname, a self-supervised framework capable of transforming the already abundant supervised text-image pairs into holistic preference triplets for more effective and cheaper LVLM alignment, eliminating the need for human preference annotations. Our approach facilitates LVLMs in progressively enhancing alignment capabilities through iterative self-improvement. The key design rationale is to devise preference triplets where the winner text consistently improves in holisticness and outperforms the loser response in quality, thereby pushing the model to ``strive to the utmost'' of alignment performance through preference fine-tuning. For each given text-image pair, SHAPE introduces multiple visual augmentations and pairs them with a summarized text to serve as the winner response, while designating the original text as the loser response. Experiments across \textbf{12} benchmarks on various model architectures and sizes, including LLaVA and DeepSeek-VL, show that SHAPE achieves significant gains, for example, achieving +11.3\% on MMVet (comprehensive evaluation), +1.4\% on MMBench (general VQA), and +8.0\% on POPE (hallucination robustness) over baselines in 7B models. Notably, qualitative analyses confirm enhanced attention to visual details and better alignment with human preferences for holistic descriptions.


Parallelized Planning-Acting for Efficient LLM-based Multi-Agent Systems

arXiv.org Artificial Intelligence

Recent advancements in Large Language Model(LLM)-based Multi-Agent Systems(MAS) have demonstrated remarkable potential for tackling complex decision-making tasks. However, existing frameworks inevitably rely on serialized execution paradigms, where agents must complete sequential LLM planning before taking action. This fundamental constraint severely limits real-time responsiveness and adaptation, which is crucial in dynamic environments with ever-changing scenarios. In this paper, we propose a novel parallelized planning-acting framework for LLM-based MAS, featuring a dual-thread architecture with interruptible execution to enable concurrent planning and acting. Specifically, our framework comprises two core threads:(1) a planning thread driven by a centralized memory system, maintaining synchronization of environmental states and agent communication to support dynamic decision-making; and (2) an acting thread equipped with a comprehensive skill library, enabling automated task execution through recursive decomposition. Extensive experiments on challenging Minecraft demonstrate the effectiveness of the proposed framework.


MINT: Multi-modal Chain of Thought in Unified Generative Models for Enhanced Image Generation

arXiv.org Artificial Intelligence

Unified generative models have demonstrated extraordinary performance in both text and image generation. However, they tend to underperform when generating intricate images with various interwoven conditions, which is hard to solely rely on straightforward text-to-image generation. In response to this challenge, we introduce MINT, an innovative unified generative model, empowered with native multimodal chain of thought (MCoT) for enhanced image generation for the first time. Firstly, we design Mixture of Transformer Experts (MTXpert), an expert-parallel structure that effectively supports both natural language generation (NLG) and visual capabilities, while avoiding potential modality conflicts that could hinder the full potential of each modality. Building on this, we propose an innovative MCoT training paradigm, a step-by-step approach to multimodal thinking, reasoning, and reflection specifically designed to enhance image generation. This paradigm equips MINT with nuanced, element-wise decoupled alignment and a comprehensive understanding of textual and visual components. Furthermore, it fosters advanced multimodal reasoning and self-reflection, enabling the construction of images that are firmly grounded in the logical relationships between these elements. Notably, MINT has been validated to exhibit superior performance across multiple benchmarks for text-to-image (T2I) and image-to-text (I2T) tasks.


Reasoning with Reinforced Functional Token Tuning

arXiv.org Artificial Intelligence

In this work, we propose Reinforced Functional Token Tuning (RFTT), a novel reinforced fine-tuning framework that empowers Large Language Models (LLMs) with self-play learn-to-reason capabilities. Unlike prior prompt-driven reasoning efforts, RFTT embeds a rich set of learnable functional tokens (e.g., , , ) directly into the model vocabulary, enabling chain-of-thought construction with diverse human-like reasoning behaviors. Specifically, RFTT comprises two phases: (1) supervised fine-tuning performs prompt-driven tree search to obtain self-generated training data annotated with functional tokens, which warms up the model to learn these tokens for reasoning; and (2) online reinforcement learning further allows the model to explore different reasoning pathways through functional token sampling without relying on prompts, thereby facilitating effective self-improvement for functional reasoning. Extensive experiments demonstrate the superiority of the proposed RFTT on mathematical benchmarks, significantly boosting Qwen-2.5-7B-Instruct (70.6% to 79.8%) and LLaMA-3.1-8B-Instruct (32.2% to 60.2%) on the MATH dataset. Moreover, the performance of RFTT consistently improves with more search rollouts at inference time. Our code is available at https://github.com/sastpg/RFTT.


Dataset Ownership Verification in Contrastive Pre-trained Models

arXiv.org Artificial Intelligence

High-quality open-source datasets, which necessitate substantial efforts for curation, has become the primary catalyst for the swift progress of deep learning. Concurrently, protecting these datasets is paramount for the well-being of the data owner. Dataset ownership verification emerges as a crucial method in this domain, but existing approaches are often limited to supervised models and cannot be directly extended to increasingly popular unsupervised pre-trained models. In this work, we propose the first dataset ownership verification method tailored specifically for self-supervised pre-trained models by contrastive learning. Its primary objective is to ascertain whether a suspicious black-box backbone has been pre-trained on a specific unlabeled dataset, aiding dataset owners in upholding their rights. The proposed approach is motivated by our empirical insights that when models are trained with the target dataset, the unary and binary instance relationships within the embedding space exhibit significant variations compared to models trained without the target dataset. We validate the efficacy of this approach across multiple contrastive pre-trained models including SimCLR, BYOL, SimSiam, MOCO v3, and DINO. The results demonstrate that our method rejects the null hypothesis with a $p$-value markedly below $0.05$, surpassing all previous methodologies. Our code is available at https://github.com/xieyc99/DOV4CL.


SecPE: Secure Prompt Ensembling for Private and Robust Large Language Models

arXiv.org Artificial Intelligence

With the growing popularity of LLMs among the general public users, privacy-preserving and adversarial robustness have become two pressing demands for LLM-based services, which have largely been pursued separately but rarely jointly. In this paper, to the best of our knowledge, we are among the first attempts towards robust and private LLM inference by tightly integrating two disconnected fields: private inference and prompt ensembling. The former protects users' privacy by encrypting inference data transmitted and processed by LLMs, while the latter enhances adversarial robustness by yielding an aggregated output from multiple prompted LLM responses. Although widely recognized as effective individually, private inference for prompt ensembling together entails new challenges that render the naive combination of existing techniques inefficient. To overcome the hurdles, we propose SecPE, which designs efficient fully homomorphic encryption (FHE) counterparts for the core algorithmic building blocks of prompt ensembling. We conduct extensive experiments on 8 tasks to evaluate the accuracy, robustness, and efficiency of SecPE. The results show that SecPE maintains high clean accuracy and offers better robustness at the expense of merely $2.5\%$ efficiency overhead compared to baseline private inference methods, indicating a satisfactory ``accuracy-robustness-efficiency'' tradeoff. For the efficiency of the encrypted Argmax operation that incurs major slowdown for prompt ensembling, SecPE is 35.4x faster than the state-of-the-art peers, which can be of independent interest beyond this work.


Activation Approximations Can Incur Safety Vulnerabilities Even in Aligned LLMs: Comprehensive Analysis and Defense

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have showcased remarkable capabilities across various domains. Accompanying the evolving capabilities and expanding deployment scenarios of LLMs, their deployment challenges escalate due to their sheer scale and the advanced yet complex activation designs prevalent in notable model series, such as Llama, Gemma, and Mistral. These challenges have become particularly pronounced in resource-constrained deployment scenarios, where mitigating inference efficiency bottlenecks is imperative. Among various recent efforts, activation approximation has emerged as a promising avenue for pursuing inference efficiency, sometimes considered indispensable in applications such as private inference. Despite achieving substantial speedups with minimal impact on utility, even appearing sound and practical for real-world deployment, the safety implications of activation approximations remain unclear. In this work, we fill this critical gap in LLM safety by conducting the first systematic safety evaluation of activation approximations. Our safety vetting spans seven sota techniques across three popular categories, revealing consistent safety degradation across ten safety-aligned LLMs.


D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models

arXiv.org Artificial Intelligence

Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.