Plotting

 Singh, Satinder


Predicting Postoperative Atrial Fibrillation from Independent ECG Components

AAAI Conferences

Postoperative atrial fibrillation (PAF) occurs in 10% to 65% of the patients undergoing cardiothoracic surgery. It is associated with increased post-surgical mortality and morbidity, and results in longer and more expensive hospital stays. Accurately stratifying patients for PAF allows for selective use of prophylactic therapies (e.g., amiodarone). Unfortunately, existing tools to stratify patients for PAF fail to provide clinically adequate discrimination. Our research addresses this situation through the development of novel electrocardiographic(ECG) markers to identify patients at risk of PAF. As a first step, we explore an eigen-decomposition approach that partitions ECG signals into atrial and ventricular components by exploiting knowledge of the underlying cardiac cycle. We then quantify electrical instability in the myocardium manifesting as probabilistic variations in atrial ECG morphology to assess therisk of PAF. When evaluated on 385 patients undergoing cardiac surgery, this approach of stratifying patients for PAF through an analysis of morphologic variability within decoupled atrial ECG demonstrated substantial promise and improved net reclassification by over 53% relative to the use of baseline clinical characteristics.


Computing Solutions in Infinite-Horizon Discounted Adversarial Patrolling Games

AAAI Conferences

Stackelberg games form the core of a number of tools deployed for computing optimal patrolling strategies in adversarial domains, such as the US Federal Air Marshall Service and the US Coast Guard. In traditional Stackelberg security game models the attacker knows only the probability that each target is covered by the defender, but is oblivious to the detailed timing of the coverage schedule. In many real-world situations, however, the attacker can observe the current location of the defender and can exploit this knowledge to reason about the defenderโ€™s future moves. We show that this general modeling framework can be captured using adversarial patrolling games (APGs) in which the defender sequentially moves between targets, with moves constrained by a graph, while the attacker can observe the defenderโ€™s current location and his (stochastic) policy concerning future moves. We offer a very general model of infinite-horizon discounted adversarial patrolling games. Our first contribution is to show that defender policies that condition only on the previous defense move (i.e., Markov stationary policies) can be arbitrarily suboptimal for general APGs. We then offer a mixed-integer non-linear programming (MINLP) formulation for computing optimal randomized policies for the defender that can condition on history of bounded, but arbitrary, length, as well as a mixed-integer linear programming (MILP) formulation to approximate these, with provable quality guarantees. Additionally, we present a non-linear programming (NLP) formulation for solving zero-sum APGs. We show experimentally that MILP significantly outperforms the MINLP formulation, and is, in turn, significantly outperformed by the NLP specialized to zero-sum games.


Learning to Make Predictions In Partially Observable Environments Without a Generative Model

arXiv.org Machine Learning

When faced with the problem of learning a model of a high-dimensional environment, a common approach is to limit the model to make only a restricted set of predictions, thereby simplifying the learning problem. These partial models may be directly useful for making decisions or may be combined together to form a more complete, structured model. However, in partially observable (non-Markov) environments, standard model-learning methods learn generative models, i.e. models that provide a probability distribution over all possible futures (such as POMDPs). It is not straightforward to restrict such models to make only certain predictions, and doing so does not always simplify the learning problem. In this paper we present prediction profile models: non-generative partial models for partially observable systems that make only a given set of predictions, and are therefore far simpler than generative models in some cases. We formalize the problem of learning a prediction profile model as a transformation of the original model-learning problem, and show empirically that one can learn prediction profile models that make a small set of important predictions even in systems that are too complex for standard generative models.


Reward Mapping for Transfer in Long-Lived Agents

Neural Information Processing Systems

We consider how to transfer knowledge from previous tasks to a current task in long-lived and bounded agents that must solve a sequence of MDPs over a finite lifetime. A novel aspect of our transfer approach is that we reuse reward functions. While this may seem counterintuitive, we build on the insight of recent work on the optimal rewards problem that guiding an agent's behavior with reward functions other than the task-specifying reward function can help overcome computational bounds of the agent. Specifically, we use good guidance reward functions learned on previous tasks in the sequence to incrementally train a reward mapping function that maps task-specifying reward functions into good initial guidance reward functions for subsequent tasks. We demonstrate that our approach can substantially improve the agent's performance relative to other approaches, including an approach that transfers policies.


On the Complexity of Policy Iteration

arXiv.org Artificial Intelligence

Decision-making problems in uncertain or stochastic domains are often formulated as Markov decision processes (MDPs). Policy iteration (PI) is a popular algorithm for searching over policy-space, the size of which is exponential in the number of states. We are interested in bounds on the complexity of PI that do not depend on the value of the discount factor. In this paper we prove the first such non-trivial, worst-case, upper bounds on the number of iterations required by PI to converge to the optimal policy. Our analysis also sheds new light on the manner in which PI progresses through the space of policies.


Approximate Planning for Factored POMDPs using Belief State Simplification

arXiv.org Artificial Intelligence

We are interested in the problem of planning for factored POMDPs. Building on the recent results of Kearns, Mansour and Ng, we provide a planning algorithm for factored POMDPs that exploits the accuracy-efficiency tradeoff in the belief state simplification introduced by Boyen and Koller.


Security Games with Limited Surveillance

AAAI Conferences

Randomized first-mover strategies of Stackelberg games are used in several deployed applications to allocate limited resources for the protection of critical infrastructure. Stackelberg games model the fact that a strategic attacker can surveil and exploit the defender's strategy, and randomization guards against the worst effects by making the defender less predictable. In accordance with the standard game-theoretic model of Stackelberg games, past work has typically assumed that the attacker has perfect knowledge of the defender's randomized strategy and will react correspondingly. In light of the fact that surveillance is costly, risky, and delays an attack, this assumption is clearly simplistic: attackers will usually act on partial knowledge of the defender's strategies. The attacker's imperfect estimate could present opportunities and possibly also threats to a strategic defender. In this paper, we therefore begin a systematic study of security games with limited surveillance. We propose a natural model wherein an attacker forms or updates a belief based on observed actions, and chooses an optimal response. We investigate the model both theoretically and experimentally. In particular, we give mathematical programs to compute optimal attacker and defender strategies for a fixed observation duration, and show how to use them to estimate the attacker's observation durations. Our experimental results show that the defender can achieve significant improvement in expected utility by taking the attacker's limited surveillance into account, validating the motivation of our work.


Computing Stackelberg Equilibria in Discounted Stochastic Games

AAAI Conferences

Stackelberg games increasingly influence security policies deployed in real-world settings. Much of the work to date focuses on devising a fixed randomized strategy for the defender, accounting for an attacker who optimally responds to it. In practice, defense policies are often subject to constraints and vary over time, allowing an attacker to infer characteristics of future policies based on current observations. A defender must therefore account for an attacker's observation capabilities in devising a security policy. We show that this general modeling framework can be captured using stochastic Stackelberg games (SSGs), where a defender commits to a dynamic policy to which the attacker devises an optimal dynamic response. We then offer the following contributions. 1) We show that Markov stationary policies suffice in SSGs, 2) present a finite-time mixed-integer non-linear program for computing a Stackelberg equilibrium in SSGs, and 3) present a mixed-integer linear program to approximate it. 4) We illustrate our algorithms on a simple SSG representing an adversarial patrolling scenario, where we study the impact of attacker patience and risk aversion on optimal defense policies.


Predictive State Representations: A New Theory for Modeling Dynamical Systems

arXiv.org Artificial Intelligence

Modeling dynamical systems, both for control purposes and to make predictions about their behavior, is ubiquitous in science and engineering. Predictive state representations (PSRs) are a recently introduced class of models for discrete-time dynamical systems. The key idea behind PSRs and the closely related OOMs (Jaeger's observable operator models) is to represent the state of the system as a set of predictions of observable outcomes of experiments one can do in the system. This makes PSRs rather different from history-based models such as nth-order Markov models and hidden-state-based models such as HMMs and POMDPs. We introduce an interesting construct, the systemdynamics matrix, and show how PSRs can be derived simply from it. We also use this construct to show formally that PSRs are more general than both nth-order Markov models and HMMs/POMDPs. Finally, we discuss the main difference between PSRs and OOMs and conclude with directions for future work.


Optimal Coordinated Planning Amongst Self-Interested Agents with Private State

arXiv.org Artificial Intelligence

Consider a multi-agent system in a dynamic and uncertain environment. Each agent's local decision problem is modeled as a Markov decision process (MDP) and agents must coordinate on a joint action in each period, which provides a reward to each agent and causes local state transitions. A social planner knows the model of every agent's MDP and wants to implement the optimal joint policy, but agents are self-interested and have private local state. We provide an incentive-compatible mechanism for eliciting state information that achieves the optimal joint plan in a Markov perfect equilibrium of the induced stochastic game. In the special case in which local problems are Markov chains and agents compete to take a single action in each period, we leverage Gittins allocation indices to provide an efficient factored algorithm and distribute computation of the optimal policy among the agents. Distributed, optimal coordinated learning in a multi-agent variant of the multi-armed bandit problem is obtained as a special case.