Shi, Guangyao
Benchmark Evaluations, Applications, and Challenges of Large Vision Language Models: A Survey
Li, Zongxia, Wu, Xiyang, Du, Hongyang, Nghiem, Huy, Shi, Guangyao
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Awesome-VLM-Papers-And-Models.git.
Inverse Risk-sensitive Multi-Robot Task Allocation
Shi, Guangyao, Sukhatme, Gaurav S.
We consider a new variant of the multi-robot task allocation problem - Inverse Risk-sensitive Multi-Robot Task Allocation (IR-MRTA). "Forward" MRTA - the process of deciding which robot should perform a task given the reward (cost)-related parameters, is widely studied in the multi-robot literature. In this setting, the reward (cost)-related parameters are assumed to be already known: parameters are first fixed offline by domain experts, followed by coordinating robots online. What if we need these parameters to be adjusted by non-expert human supervisors who oversee the robots during tasks to adapt to new situations? We are interested in the case where the human supervisor's perception of the allocation risk may change and suggest different allocations for robots compared to that from the MRTA algorithm. In such cases, the robots need to change the parameters of the allocation problem based on evolving human preferences. We study such problems through the lens of inverse task allocation, i.e., the process of finding parameters given solutions to the problem. Specifically, we propose a new formulation IR-MRTA, in which we aim to find a new set of parameters of the human behavioral risk model that minimally deviates from the current MRTA parameters and can make a greedy task allocation algorithm allocate robot resources in line with those suggested by humans. We show that even in the simple case such a problem is a non-convex optimization problem. We propose a Branch $\&$ Bound algorithm (BB-IR-MRTA) to solve such problems. In numerical simulations of a case study on multi-robot target capture, we demonstrate how to use BB-IR-MRTA and we show that the proposed algorithm achieves significant advantages in running time and peak memory usage compared to a brute-force baseline.
Fast k-connectivity Restoration in Multi-Robot Systems for Robust Communication Maintenance
Ishat-E-Rabban, Md, Shi, Guangyao, Bonner, Griffin, Tokekar, Pratap
Maintaining a robust communication network plays an important role in the success of a multi-robot team jointly performing an optimization task. A key characteristic of a robust cooperative multirobot system is the ability to repair the communication topology in the case of robot failure. In this paper, we focus on the Fast k-connectivity Restoration (FCR) problem, which aims to repair a network to make it k-connected with minimum robot movement. Here, a k-connected network refers to a communication topology that cannot be disconnected by removing k 1 nodes. We develop a Quadratically Constrained Program (QCP) formulation of the FCR problem, which provides a way to optimally solve the problem, but cannot handle large instances due to high computational overhead. We therefore present a scalable algorithm, called EA-SCR, for the FCR problem using graph theoretic concepts. By conducting empirical studies, we demonstrate that the EA-SCR algorithm performs within 10% of the optimal while being orders of magnitude faster. We also show that EA-SCR outperforms existing solutions by 30% in terms of the FCR distance metric.
LAVA: Long-horizon Visual Action based Food Acquisition
Bhaskar, Amisha, Liu, Rui, Sharma, Vishnu D., Shi, Guangyao, Tokekar, Pratap
Robotic Assisted Feeding (RAF) addresses the fundamental need for individuals with mobility impairments to regain autonomy in feeding themselves. The goal of RAF is to use a robot arm to acquire and transfer food to individuals from the table. Existing RAF methods primarily focus on solid foods, leaving a gap in manipulation strategies for semi-solid and deformable foods. This study introduces Long-horizon Visual Action (LAVA) based food acquisition of liquid, semisolid, and deformable foods. Long-horizon refers to the goal of "clearing the bowl" by sequentially acquiring the food from the bowl. LAVA employs a hierarchical policy for long-horizon food acquisition tasks. The framework uses high-level policy to determine primitives by leveraging ScoopNet. At the mid-level, LAVA finds parameters for primitives using vision. To carry out sequential plans in the real world, LAVA delegates action execution which is driven by Low-level policy that uses parameters received from mid-level policy and behavior cloning ensuring precise trajectory execution. We validate our approach on complex real-world acquisition trials involving granular, liquid, semisolid, and deformable food types along with fruit chunks and soup acquisition. Across 46 bowls, LAVA acquires much more efficiently than baselines with a success rate of 89 +/- 4% and generalizes across realistic plate variations such as different positions, varieties, and amount of food in the bowl. Code, datasets, videos, and supplementary materials can be found on our website.
Inverse Submodular Maximization with Application to Human-in-the-Loop Multi-Robot Multi-Objective Coverage Control
Shi, Guangyao, Sukhatme, Gaurav S.
We consider a new type of inverse combinatorial optimization, Inverse Submodular Maximization (ISM), for human-in-the-loop multi-robot coordination. Forward combinatorial optimization, defined as the process of solving a combinatorial problem given the reward (cost)-related parameters, is widely used in multi-robot coordination. In the standard pipeline, the reward (cost)-related parameters are designed offline by domain experts first and then these parameters are utilized for coordinating robots online. What if we need to change these parameters by non-expert human supervisors who watch over the robots during tasks to adapt to some new requirements? We are interested in the case where human supervisors can suggest what actions to take, and the robots need to change the internal parameters based on such suggestions. We study such problems from the perspective of inverse combinatorial optimization, i.e., the process of finding parameters given solutions to the problem. Specifically, we propose a new formulation for ISM, in which we aim to find a new set of parameters that minimally deviate from the current parameters and can make the greedy algorithm output actions the same as those suggested by humans. We show that such problems can be formulated as a Mixed Integer Quadratic Program (MIQP). However, MIQP involves exponentially many binary variables, making it intractable for the existing solver when the problem size is large. We propose a new algorithm under the Branch $\&$ Bound paradigm to solve such problems. In numerical simulations, we demonstrate how to use ISM in multi-robot multi-objective coverage control, and we show that the proposed algorithm achieves significant advantages in running time and peak memory usage compared to directly using an existing solver.
From Words to Routes: Applying Large Language Models to Vehicle Routing
Huang, Zhehui, Shi, Guangyao, Sukhatme, Gaurav S.
LLMs have shown impressive progress in robotics (e.g., manipulation and navigation) with natural language task descriptions. The success of LLMs in these tasks leads us to wonder: What is the ability of LLMs to solve vehicle routing problems (VRPs) with natural language task descriptions? In this work, we study this question in three steps. First, we construct a dataset with 21 types of single- or multi-vehicle routing problems. Second, we evaluate the performance of LLMs across four basic prompt paradigms of text-to-code generation, each involving different types of text input. We find that the basic prompt paradigm, which generates code directly from natural language task descriptions, performs the best for GPT-4, achieving 56% feasibility, 40% optimality, and 53% efficiency. Third, based on the observation that LLMs may not be able to provide correct solutions at the initial attempt, we propose a framework that enables LLMs to refine solutions through self-reflection, including self-debugging and self-verification. With GPT-4, our proposed framework achieves a 16% increase in feasibility, a 7% increase in optimality, and a 15% increase in efficiency. Moreover, we examine the sensitivity of GPT-4 to task descriptions, specifically focusing on how its performance changes when certain details are omitted from the task descriptions, yet the core meaning is preserved. Our findings reveal that such omissions lead to a notable decrease in performance: 4% in feasibility, 4% in optimality, and 5% in efficiency. Website: https://sites.google.com/view/words-to-routes/
AG-CVG: Coverage Planning with a Mobile Recharging UGV and an Energy-Constrained UAV
Karapetyan, Nare, Asghar, Ahmad Bilal, Bhaskar, Amisha, Shi, Guangyao, Manocha, Dinesh, Tokekar, Pratap
In this paper, we present an approach for coverage path planning for a team of an energy-constrained Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV). Both the UAV and the UGV have predefined areas that they have to cover. The goal is to perform complete coverage by both robots while minimizing the coverage time. The UGV can also serve as a mobile recharging station. The UAV and UGV need to occasionally rendezvous for recharging. We propose a heuristic method to address this NP-Hard planning problem. Our approach involves initially determining coverage paths without factoring in energy constraints. Subsequently, we cluster segments of these paths and employ graph matching to assign UAV clusters to UGV clusters for efficient recharging management. We perform numerical analysis on real-world coverage applications and show that compared with a greedy approach our method reduces rendezvous overhead on average by 11.33\%. We demonstrate proof-of-concept with a team of a VOXL m500 drone and a Clearpath Jackal ground vehicle, providing a complete system from the offline algorithm to the field execution.
Fast Biconnectivity Restoration in Multi-Robot Systems for Robust Communication Maintenance
Ishat-E-Rabban, Md, Shi, Guangyao, Tokekar, Pratap
Maintaining a robust communication network plays an important role in the success of a multi-robot team jointly performing an optimization task. A key characteristic of a robust multi-robot system is the ability to repair the communication topology itself in the case of robot failure. In this paper, we focus on the Fast Biconnectivity Restoration (FBR) problem, which aims to repair a connected network to make it biconnected as fast as possible, where a biconnected network is a communication topology that cannot be disconnected by removing one node. We develop a Quadratically Constrained Program (QCP) formulation of the FBR problem, which provides a way to optimally solve the problem. We also propose an approximation algorithm for the FBR problem based on graph theory. By conducting empirical studies, we demonstrate that our proposed approximation algorithm performs close to the optimal while significantly outperforming the existing solutions.
Decision-Oriented Intervention Cost Prediction for Multi-robot Persistent Monitoring
Shi, Guangyao, Shek, Chak Lam, Karapetyan, Nare, Tokekar, Pratap
In this paper, we present a differentiable, decision-oriented learning technique for a class of vehicle routing problems. Specifically, we consider a scenario where a team of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are persistently monitoring an environment. The UGVs are occasionally taken over by humans to take detours to recharge the depleted UAVs. The goal is to select routes for the UGVs so that they can efficiently monitor the environment while reducing the cost of interventions. The former is modeled as a monotone, submodular function whereas the latter is a linear function of the routes of the UGVs. We consider a scenario where the former is known but the latter depends on the context (e.g., wind and terrain conditions) that must be learned. Typically, we first learn to predict the cost function and then solve the optimization problem. However, the loss function used in prediction may be misaligned with our final goal of finding good routes. We propose a \emph{decision-oriented learning} framework that incorporates task optimization as a differentiable layer in the prediction phase. To make the task optimization (which is a non-monotone submodular function) differentiable, we propose the Differentiable Cost Scaled Greedy algorithm. We demonstrate the efficacy of the proposed framework through numerical simulations. The results show that the proposed framework can result in better performance than the traditional approach.
Decision-Oriented Learning with Differentiable Submodular Maximization for Vehicle Routing Problem
Shi, Guangyao, Tokekar, Pratap
We study the problem of learning a function that maps context observations (input) to parameters of a submodular function (output). Our motivating case study is a specific type of vehicle routing problem, in which a team of Unmanned Ground Vehicles (UGVs) can serve as mobile charging stations to recharge a team of Unmanned Ground Vehicles (UAVs) that execute persistent monitoring tasks. {We want to learn the mapping from observations of UAV task routes and wind field to the parameters of a submodular objective function, which describes the distribution of landing positions of the UAVs .} Traditionally, such a learning problem is solved independently as a prediction phase without considering the downstream task optimization phase. However, the loss function used in prediction may be misaligned with our final goal, i.e., a good routing decision. Good performance in the isolated prediction phase does not necessarily lead to good decisions in the downstream routing task. In this paper, we propose a framework that incorporates task optimization as a differentiable layer in the prediction phase. Our framework allows end-to-end training of the prediction model without using engineered intermediate loss that is targeted only at the prediction performance. In the proposed framework, task optimization (submodular maximization) is made differentiable by introducing stochastic perturbations into deterministic algorithms (i.e., stochastic smoothing). We demonstrate the efficacy of the proposed framework using synthetic data. Experimental results of the mobile charging station routing problem show that the proposed framework can result in better routing decisions, e.g. the average number of UAVs recharged increases, compared to the prediction-optimization separate approach.