Sheng Chen
Structured Matrix Recovery via the Generalized Dantzig Selector
Sheng Chen, Arindam Banerjee
In recent years, structured matrix recovery problems have gained considerable attention for its real world applications, such as recommender systems and computer vision. Much of the existing work has focused on matrices with low-rank structure, and limited progress has been made on matrices with other types of structure. In this paper we present non-asymptotic analysis for estimation of generally structured matrices via the generalized Dantzig selector based on sub-Gaussian measurements. We show that the estimation error can always be succinctly expressed in terms of a few geometric measures such as Gaussian widths of suitable sets associated with the structure of the underlying true matrix. Further, we derive general bounds on these geometric measures for structures characterized by unitarily invariant norms, a large family covering most matrix norms of practical interest. Examples are provided to illustrate the utility of our theoretical development.
Alternating Estimation for Structured High-Dimensional Multi-Response Models
Sheng Chen, Arindam Banerjee
We consider the problem of learning high-dimensional multi-response linear models with structured parameters. By exploiting the noise correlations among different responses, we propose an alternating estimation (AltEst) procedure to estimate the model parameters based on the generalized Dantzig selector (GDS). Under suitable sample size and resampling assumptions, we show that the error of the estimates generated by AltEst, with high probability, converges linearly to certain minimum achievable level, which can be tersely expressed by a few geometric measures, such as Gaussian width of sets related to the parameter structure. To the best of our knowledge, this is the first non-asymptotic statistical guarantee for such AltEst-type algorithm applied to estimation with general structures.
An Improved Analysis of Alternating Minimization for Structured Multi-Response Regression
Sheng Chen, Arindam Banerjee
Multi-response linear models aggregate a set of vanilla linear models by assuming correlated noise across them, which has an unknown covariance structure. To find the coefficient vector, estimators with a joint approximation of the noise covariance are often preferred than the simple linear regression in view of their superior empirical performance, which can be generally solved by alternating-minimizationtype procedures. Due to the non-convex nature of such joint estimators, the theoretical justification of their efficiency is typically challenging. The existing analyses fail to fully explain the empirical observations due to the assumption of resampling on the alternating procedures, which requires access to fresh samples in each iteration. In this work, we present a resampling-free analysis for the alternating minimization algorithm applied to the multi-response regression. In particular, we focus on the high-dimensional setting of multi-response linear models with structured coefficient parameter, and the statistical error of the parameter can be expressed by the complexity measure, Gaussian width, which is related to the assumed structure. More importantly, to the best of our knowledge, our result reveals for the first time that the alternating minimization with random initialization can achieve the same performance as the well-initialized one when solving this multi-response regression problem. Experimental results support our theoretical developments.