Goto

Collaborating Authors

 Shen, Jiaming


EchoLM: Accelerating LLM Serving with Real-time Knowledge Distillation

arXiv.org Artificial Intelligence

Large language models (LLMs) have excelled in various applications, yet serving them at scale is challenging due to their substantial resource demands and high latency. Our real-world studies reveal that over 60% of user requests to LLMs have semantically similar counterparts, suggesting the potential for knowledge sharing among requests. However, naively caching and reusing past responses leads to large quality degradation. In this paper, we introduce EchoLM, an in-context caching system that leverages historical requests as examples to guide response generation, enabling selective offloading of requests to more efficient LLMs. However, enabling this real-time knowledge transfer leads to intricate tradeoffs between response quality, latency, and system throughput at scale. For a new request, EchoLM identifies similar, high-utility examples and efficiently prepends them to the input for better response. At scale, EchoLM adaptively routes requests to LLMs of varying capabilities, accounting for response quality and serving loads. EchoLM employs a cost-aware cache replay mechanism to improve example quality and coverage offline, maximizing cache utility and runtime efficiency. Evaluations on millions of open-source requests demonstrate that EchoLM has a throughput improvement of 1.4-5.9x while reducing latency by 28-71% without hurting response quality on average.


Integrating Planning into Single-Turn Long-Form Text Generation

arXiv.org Artificial Intelligence

Generating high-quality, in-depth textual documents, such as academic papers, news articles, Wikipedia entries, and books, remains a significant challenge for Large Language Models (LLMs). In this paper, we propose to use planning to generate long form content. To achieve our goal, we generate intermediate steps via an auxiliary task that teaches the LLM to plan, reason and structure before generating the final text. Our main novelty lies in a single auxiliary task that does not require multiple rounds of prompting or planning. To overcome the scarcity of training data for these intermediate steps, we leverage LLMs to generate synthetic intermediate writing data such as outlines, key information and summaries from existing full articles. Our experiments demonstrate on two datasets from different domains, namely the scientific news dataset SciNews and Wikipedia datasets in KILT-Wiki and FreshWiki, that LLMs fine-tuned with the auxiliary task generate higher quality documents. We observed +2.5% improvement in ROUGE-Lsum, and a strong 3.60 overall win/loss ratio via human SxS evaluation, with clear wins in organization, relevance, and verifiability.


RRM: Robust Reward Model Training Mitigates Reward Hacking

arXiv.org Artificial Intelligence

Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human preferences. However, traditional RM training, which relies on response pairs tied to specific prompts, struggles to disentangle prompt-driven preferences from prompt-independent artifacts, such as response length and format. In this work, we expose a fundamental limitation of current RM training methods, where RMs fail to effectively distinguish between contextual signals and irrelevant artifacts when determining preferences. To address this, we introduce a causal framework that learns preferences independent of these artifacts and propose a novel data augmentation technique designed to eliminate them. Extensive experiments show that our approach successfully filters out undesirable artifacts, yielding a more robust reward model (RRM). Our RRM improves the performance of a pairwise reward model trained on Gemma-2-9b-it, on Reward-Bench, increasing accuracy from 80.61% to 84.15%. Additionally, we train two DPO policies using both the RM and RRM, demonstrating that the RRM significantly enhances DPO-aligned policies, improving MT-Bench scores from 7.27 to 8.31 and length-controlled win-rates in AlpacaEval-2 from 33.46% to 52.49%. Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone in aligning large language models (LLMs) with human preferences to produce responses that are more helpful, honest, and harmless (Ouyang et al., 2022; Bai et al., 2022a). This approach involves training a reward model (RM) on human feedback, which then guides the LLM to generate high-quality responses through reinforcement learning.


Predicting Text Preference Via Structured Comparative Reasoning

arXiv.org Artificial Intelligence

Comparative reasoning plays a crucial role in text preference prediction; however, large language models (LLMs) often demonstrate inconsistencies in their reasoning. While approaches like Chain-of-Thought improve accuracy in many other settings, they struggle to consistently distinguish the similarities and differences of complex texts. We introduce SC, a prompting approach that predicts text preferences by generating structured intermediate comparisons. SC begins by proposing aspects of comparison, followed by generating textual comparisons under each aspect. We select consistent comparisons with a pairwise consistency comparator that ensures each aspect's comparisons clearly distinguish differences between texts, significantly reducing hallucination and improving consistency. Our comprehensive evaluations across various NLP tasks, including summarization, retrieval, and automatic rating, demonstrate that SC equips LLMs to achieve state-of-the-art performance in text preference prediction.


TELEClass: Taxonomy Enrichment and LLM-Enhanced Hierarchical Text Classification with Minimal Supervision

arXiv.org Artificial Intelligence

Hierarchical text classification aims to categorize each document into a set of classes in a label taxonomy. Most earlier works focus on fully or semi-supervised methods that require a large amount of human annotated data which is costly and time-consuming to acquire. To alleviate human efforts, in this paper, we work on hierarchical text classification with the minimal amount of supervision: using the sole class name of each node as the only supervision. Recently, large language models (LLM) show competitive performance on various tasks through zero-shot prompting, but this method performs poorly in the hierarchical setting, because it is ineffective to include the large and structured label space in a prompt. On the other hand, previous weakly-supervised hierarchical text classification methods only utilize the raw taxonomy skeleton and ignore the rich information hidden in the text corpus that can serve as additional class-indicative features. To tackle the above challenges, we propose TELEClass, Taxonomy Enrichment and LLM-Enhanced weakly-supervised hierarchical text Classification, which (1) automatically enriches the label taxonomy with class-indicative terms to facilitate classifier training and (2) utilizes LLMs for both data annotation and creation tailored for the hierarchical label space. Experiments show that TELEClass can outperform previous weakly-supervised methods and LLM-based zero-shot prompting methods on two public datasets.


PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exhibited impressive capabilities in various tasks, yet their vast parameter sizes restrict their applicability in resource-constrained settings. Knowledge distillation (KD) offers a viable solution by transferring expertise from large teacher models to compact student models. However, traditional KD techniques face specific challenges when applied to LLMs, including restricted access to LLM outputs, significant teacher-student capacity gaps, and the inherited mis-calibration issue. In this work, we present PLaD, a novel preference-based LLM distillation framework. PLaD exploits the teacher-student capacity discrepancy to generate pseudo-preference pairs where teacher outputs are preferred over student outputs. Then, PLaD leverages a ranking loss to re-calibrate student's estimation of sequence likelihood, which steers the student's focus towards understanding the relative quality of outputs instead of simply imitating the teacher. PLaD bypasses the need for access to teacher LLM's internal states, tackles the student's expressivity limitations, and mitigates the student mis-calibration issue. Through extensive experiments on two sequence generation tasks and with various LLMs, we demonstrate the effectiveness of our proposed PLaD framework.


HeMeNet: Heterogeneous Multichannel Equivariant Network for Protein Multitask Learning

arXiv.org Artificial Intelligence

Understanding and leveraging the 3D structures of proteins is central to a variety of biological and drug discovery tasks. While deep learning has been applied successfully for structure-based protein function prediction tasks, current methods usually employ distinct training for each task. However, each of the tasks is of small size, and such a single-task strategy hinders the models' performance and generalization ability. As some labeled 3D protein datasets are biologically related, combining multi-source datasets for larger-scale multi-task learning is one way to overcome this problem. In this paper, we propose a neural network model to address multiple tasks jointly upon the input of 3D protein structures. In particular, we first construct a standard structure-based multi-task benchmark called Protein-MT, consisting of 6 biologically relevant tasks, including affinity prediction and property prediction, integrated from 4 public datasets. Then, we develop a novel graph neural network for multi-task learning, dubbed Heterogeneous Multichannel Equivariant Network (HeMeNet), which is E(3) equivariant and able to capture heterogeneous relationships between different atoms. Besides, HeMeNet can achieve task-specific learning via the task-aware readout mechanism. Extensive evaluations on our benchmark verify the effectiveness of multi-task learning, and our model generally surpasses state-of-the-art models.


LiPO: Listwise Preference Optimization through Learning-to-Rank

arXiv.org Artificial Intelligence

Aligning language models (LMs) with curated human feedback is critical to control their behaviors in real-world applications. Several recent policy optimization methods, such as DPO and SLiC, serve as promising alternatives to the traditional Reinforcement Learning from Human Feedback (RLHF) approach. In practice, human feedback often comes in a format of a ranked list over multiple responses to amortize the cost of reading prompt. Multiple responses can also be ranked by reward models or AI feedback. There lacks such a study on directly fitting upon a list of responses. In this work, we formulate the LM alignment as a listwise ranking problem and describe the Listwise Preference Optimization (LiPO) framework, where the policy can potentially learn more effectively from a ranked list of plausible responses given the prompt. This view draws an explicit connection to Learning-to-Rank (LTR), where most existing preference optimization work can be mapped to existing ranking objectives, especially pairwise ones. Following this connection, we provide an examination of ranking objectives that are not well studied for LM alignment withDPO and SLiC as special cases when list size is two. In particular, we highlight a specific method, LiPO-{\lambda}, which leverages a state-of-the-art listwise ranking objective and weights each preference pair in a more advanced manner. We show that LiPO-{\lambda} can outperform DPO and SLiC by a clear margin on two preference alignment tasks.


Explanation-aware Soft Ensemble Empowers Large Language Model In-context Learning

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks. With only a few demonstration examples, these LLMs can quickly adapt to target tasks without expensive gradient updates. Common strategies to boost such "in-context" learning ability are to ensemble multiple model decoded results and require the model to generate an explanation along with the prediction. However, these models often treat different class predictions equally and neglect the potential discrepancy between the explanations and predictions. SE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs. We design two techniques, explanation-guided ensemble, and soft probability aggregation, to mitigate the effect of unreliable explanations and improve the consistency between explanations and final predictions. Experiments on seven natural language understanding tasks and four varying-size LLMs demonstrate the effectiveness of our proposed framework. Recent advancements in Natural Language Processing (NLP) have witnessed the remarkable capabilities of Large Language Models (LLMs) (Brown et al., 2020; Tay et al., 2023; Chowdhery et al., 2022; Anil et al., 2023; Touvron et al., 2023; OpenAI, 2023). These LLMs can rapidly adapt to new tasks by learning only on a few input-output pairs (a.k.a. Yet, beyond those demonstrations, a significant facet of human learning revolves around explanations. Consequently, the integration of free-text explanations into LLM prompting holds great potentials to further enhance in-context learning performance. Recent studies have examined how to incorporate free-text explanations into LLM in-context learning scheme. For instance, the Predict-then-Explain pipeline (Lampinen et al., 2022) proposes to generate the explanation after making the prediction.


Large Language Model as Attributed Training Data Generator: A Tale of Diversity and Bias

arXiv.org Artificial Intelligence

Large language models (LLMs) have been recently leveraged as training data generators for various natural language processing (NLP) tasks. While previous research has explored different approaches to training models using generated data, they generally rely on simple class-conditional prompts, which may limit the diversity of the generated data and inherit systematic biases of LLM. Thus, we investigate training data generation with diversely attributed prompts (e.g., specifying attributes like length and style), which have the potential to yield diverse and attributed generated data. Our investigation focuses on datasets with high cardinality and diverse domains, wherein we demonstrate that attributed prompts outperform simple class-conditional prompts in terms of the resulting model's performance. Additionally, we present a comprehensive empirical study on data generation encompassing vital aspects like bias, diversity, and efficiency, and highlight three key observations: firstly, synthetic datasets generated by simple prompts exhibit significant biases, such as regional bias; secondly, attribute diversity plays a pivotal role in enhancing model performance; lastly, attributed prompts achieve the performance of simple class-conditional prompts while utilizing only 5\% of the querying cost of ChatGPT associated with the latter. The data and code are available on \url{https://github.com/yueyu1030/AttrPrompt}.