Shen, Hao
PII-Bench: Evaluating Query-Aware Privacy Protection Systems
Shen, Hao, Gu, Zhouhong, Hong, Haokai, Han, Weili
The widespread adoption of Large Language Models (LLMs) has raised significant privacy concerns regarding the exposure of personally identifiable information (PII) in user prompts. To address this challenge, we propose a query-unrelated PII masking strategy and introduce PII-Bench, the first comprehensive evaluation framework for assessing privacy protection systems. PII-Bench comprises 2,842 test samples across 55 fine-grained PII categories, featuring diverse scenarios from single-subject descriptions to complex multi-party interactions. Each sample is carefully crafted with a user query, context description, and standard answer indicating query-relevant PII. Our empirical evaluation reveals that while current models perform adequately in basic PII detection, they show significant limitations in determining PII query relevance. Even state-of-the-art LLMs struggle with this task, particularly in handling complex multi-subject scenarios, indicating substantial room for improvement in achieving intelligent PII masking.
Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review
Wu, Di, Wei, Xian, Chen, Guang, Shen, Hao, Wang, Xiangfeng, Li, Wenhao, Jin, Bo
Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
A Scalable Crawling Algorithm Utilizing Noisy Change-Indicating Signals
Busa-Fekete, Rรณbert, Zimmert, Julian, Gyรถrgy, Andrรกs, Qiu, Linhai, Sung, Tzu-Wei, Shen, Hao, Choi, Hyomin, Subramaniam, Sharmila, Xiao, Li
Web refresh crawling is the problem of keeping a cache of web pages fresh, that is, having the most recent copy available when a page is requested, given a limited bandwidth available to the crawler. Under the assumption that the change and request events, resp., to each web page follow independent Poisson processes, the optimal scheduling policy was derived by Azar et al. 2018. In this paper, we study an extension of this problem where side information indicating content changes, such as various types of web pings, for example, signals from sitemaps, content delivery networks, etc., is available. Incorporating such side information into the crawling policy is challenging, because (i) the signals can be noisy with false positive events and with missing change events; and (ii) the crawler should achieve a fair performance over web pages regardless of the quality of the side information, which might differ from web page to web page. We propose a scalable crawling algorithm which (i) uses the noisy side information in an optimal way under mild assumptions; (ii) can be deployed without heavy centralized computation; (iii) is able to crawl web pages at a constant total rate without spikes in the total bandwidth usage over any time interval, and automatically adapt to the new optimal solution when the total bandwidth changes without centralized computation. Experiments clearly demonstrate the versatility of our approach.
Drift to Remember
Du, Jin, Zhang, Xinhe, Shen, Hao, Xian, Xun, Wang, Ganghua, Zhang, Jiawei, Yang, Yuhong, Li, Na, Liu, Jia, Ding, Jie
Lifelong learning in artificial intelligence (AI) aims to mimic the biological brain's ability to continuously learn and retain knowledge, yet it faces challenges such as catastrophic forgetting. Recent neuroscience research suggests that neural activity in biological systems undergoes representational drift, where neural responses evolve over time, even with consistent inputs and tasks. We hypothesize that representational drift can alleviate catastrophic forgetting in AI during new task acquisition. To test this, we introduce DriftNet, a network designed to constantly explore various local minima in the loss landscape while dynamically retrieving relevant tasks. This approach ensures efficient integration of new information and preserves existing knowledge. Experimental studies in image classification and natural language processing demonstrate that DriftNet outperforms existing models in lifelong learning. Importantly, DriftNet is scalable in handling a sequence of tasks such as sentiment analysis and question answering using large language models (LLMs) with billions of parameters on a single Nvidia A100 GPU. DriftNet efficiently updates LLMs using only new data, avoiding the need for full dataset retraining. Tested on GPT-2 and RoBERTa, DriftNet is a robust, cost-effective solution for lifelong learning in LLMs. This study not only advances AI systems to emulate biological learning, but also provides insights into the adaptive mechanisms of biological neural systems, deepening our understanding of lifelong learning in nature.
AgentGroupChat: An Interactive Group Chat Simulacra For Better Eliciting Emergent Behavior
Gu, Zhouhong, Zhu, Xiaoxuan, Guo, Haoran, Zhang, Lin, Cai, Yin, Shen, Hao, Chen, Jiangjie, Ye, Zheyu, Dai, Yifei, Gao, Yan, Hu, Yao, Feng, Hongwei, Xiao, Yanghua
Language significantly influences the formation and evolution of Human emergent behavior, which is crucial in understanding collective intelligence within human societies. Considering that the study of how language affects human behavior needs to put it into the dynamic scenarios in which it is used, we introduce AgentGroupChat in this paper, a simulation that delves into the complex role of language in shaping collective behavior through interactive debate scenarios. Central to this simulation are characters engaging in dynamic conversation interactions. To enable simulation, we introduce the Verbal Strategist Agent, utilizing large language models to enhance interaction strategies by incorporating elements of persona and action. We set four narrative scenarios based on AgentGroupChat to demonstrate the simulation's capacity to mimic complex language use in group dynamics. Evaluations focus on aligning agent behaviors with human expectations and the emergence of collective behaviors within the simulation. Results reveal that emergent behaviors materialize from a confluence of factors: a conducive environment for extensive information exchange, characters with diverse traits, high linguistic comprehension, and strategic adaptability. During discussions on ``the impact of AI on humanity'' in AgentGroupChat simulation, philosophers commonly agreed that ``AI could enhance societal welfare with judicious limitations'' and even come to a conclusion that ``the essence of true intelligence encompasses understanding the necessity to constrain self abilities''. Additionally, in the competitive domain of casting for primary roles in films in AgentGroupChat, certain actors were ready to reduce their remuneration or accept lesser roles, motivated by their deep-seated desire to contribute to the project.
Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey
Wรถrmann, Julian, Bogdoll, Daniel, Brunner, Christian, Bรผhrle, Etienne, Chen, Han, Chuo, Evaristus Fuh, Cvejoski, Kostadin, van Elst, Ludger, Gottschall, Philip, Griesche, Stefan, Hellert, Christian, Hesels, Christian, Houben, Sebastian, Joseph, Tim, Keil, Niklas, Kelsch, Johann, Keser, Mert, Kรถnigshof, Hendrik, Kraft, Erwin, Kreuser, Leonie, Krone, Kevin, Latka, Tobias, Mattern, Denny, Matthes, Stefan, Motzkus, Franz, Munir, Mohsin, Nekolla, Moritz, Paschke, Adrian, von Pilchau, Stefan Pilar, Pintz, Maximilian Alexander, Qiu, Tianming, Qureishi, Faraz, Rizvi, Syed Tahseen Raza, Reichardt, Jรถrg, von Rueden, Laura, Sagel, Alexander, Sasdelli, Diogo, Scholl, Tobias, Schunk, Gerhard, Schwalbe, Gesina, Shen, Hao, Shoeb, Youssef, Stapelbroek, Hendrik, Stehr, Vera, Srinivas, Gurucharan, Tran, Anh Tuan, Vivekanandan, Abhishek, Wang, Ya, Wasserrab, Florian, Werner, Tino, Wirth, Christian, Zwicklbauer, Stefan
The availability of representative datasets is an essential prerequisite for many successful artificial intelligence and machine learning models. However, in real life applications these models often encounter scenarios that are inadequately represented in the data used for training. There are various reasons for the absence of sufficient data, ranging from time and cost constraints to ethical considerations. As a consequence, the reliable usage of these models, especially in safety-critical applications, is still a tremendous challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches. Knowledge augmented machine learning approaches offer the possibility of compensating for deficiencies, errors, or ambiguities in the data, thus increasing the generalization capability of the applied models. Even more, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-driven models with existing knowledge. The identified approaches are structured according to the categories knowledge integration, extraction and conformity. In particular, we address the application of the presented methods in the field of autonomous driving.
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Matthes, Stefan, Han, Zhiwei, Shen, Hao
Contrastive learning has recently emerged as a promising approach for learning data representations that discover and disentangle the explanatory factors of the data. Previous analyses of such approaches have largely focused on individual contrastive losses, such as noise-contrastive estimation (NCE) and InfoNCE, and rely on specific assumptions about the data generating process. This paper extends the theoretical guarantees for disentanglement to a broader family of contrastive methods, while also relaxing the assumptions about the data distribution. Specifically, we prove identifiability of the true latents for four contrastive losses studied in this paper, without imposing common independence assumptions. The theoretical findings are validated on several benchmark datasets. Finally, practical limitations of these methods are also investigated.
Potential-based Credit Assignment for Cooperative RL-based Testing of Autonomous Vehicles
Ayvaz, Utku, Cheng, Chih-Hong, Shen, Hao
While autonomous vehicles (AVs) may perform remarkably well in generic real-life cases, their irrational action in some unforeseen cases leads to critical safety concerns. This paper introduces the concept of collaborative reinforcement learning (RL) to generate challenging test cases for AV planning and decision-making module. One of the critical challenges for collaborative RL is the credit assignment problem, where a proper assignment of rewards to multiple agents interacting in the traffic scenario, considering all parameters and timing, turns out to be non-trivial. In order to address this challenge, we propose a novel potential-based reward-shaping approach inspired by counterfactual analysis for solving the credit-assignment problem. The evaluation in a simulated environment demonstrates the superiority of our proposed approach against other methods using local and global rewards.
SPSQL: Step-by-step Parsing Based Framework for Text-to-SQL Generation
Shen, Ran, Sun, Gang, Shen, Hao, Li, Yiling, Jin, Liangfeng, Jiang, Han
Converting text into the structured query language (Text2SQL) is a research hotspot in the field of natural language processing (NLP), which has broad application prospects. In the era of big data, the use of databases has penetrated all walks of life, in which the collected data is large in scale, diverse in variety, and wide in scope, making the data query cumbersome and inefficient, and putting forward higher requirements for the Text2SQL model. In practical applications, the current mainstream end-to-end Text2SQL model is not only difficult to build due to its complex structure and high requirements for training data, but also difficult to adjust due to massive parameters. In addition, the accuracy of the model is hard to achieve the desired result. Based on this, this paper proposes a pipelined Text2SQL method: SPSQL. This method disassembles the Text2SQL task into four subtasks--table selection, column selection, SQL generation, and value filling, which can be converted into a text classification problem, a sequence labeling problem, and two text generation problems, respectively. Then, we construct data formats of different subtasks based on existing data and improve the accuracy of the overall model by improving the accuracy of each submodel. We also use the named entity recognition module and data augmentation to optimize the overall model. We construct the dataset based on the marketing business data of the State Grid Corporation of China. Experiments demonstrate our proposed method achieves the best performance compared with the end-to-end method and other pipeline methods.
UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy
Xu, Yinzhen, Wan, Weikang, Zhang, Jialiang, Liu, Haoran, Shan, Zikang, Shen, Hao, Wang, Ruicheng, Geng, Haoran, Weng, Yijia, Chen, Jiayi, Liu, Tengyu, Yi, Li, Wang, He
In this work, we tackle the problem of learning universal robotic dexterous grasping from a point cloud observation under a table-top setting. The goal is to grasp and lift up objects in high-quality and diverse ways and generalize across hundreds of categories and even the unseen. Inspired by successful pipelines used in parallel gripper grasping, we split the task into two stages: 1) grasp proposal (pose) generation and 2) goal-conditioned grasp execution. For the first stage, we propose a novel probabilistic model of grasp pose conditioned on the point cloud observation that factorizes rotation from translation and articulation. Trained on our synthesized large-scale dexterous grasp dataset, this model enables us to sample diverse and high-quality dexterous grasp poses for the object point cloud.For the second stage, we propose to replace the motion planning used in parallel gripper grasping with a goal-conditioned grasp policy, due to the complexity involved in dexterous grasping execution. Note that it is very challenging to learn this highly generalizable grasp policy that only takes realistic inputs without oracle states. We thus propose several important innovations, including state canonicalization, object curriculum, and teacher-student distillation. Integrating the two stages, our final pipeline becomes the first to achieve universal generalization for dexterous grasping, demonstrating an average success rate of more than 60\% on thousands of object instances, which significantly outperforms all baselines, meanwhile showing only a minimal generalization gap.