Goto

Collaborating Authors

 Shen, Han-Wei


ConfEviSurrogate: A Conformalized Evidential Surrogate Model for Uncertainty Quantification

arXiv.org Machine Learning

Surrogate models, crucial for approximating complex simulation data across sciences, inherently carry uncertainties that range from simulation noise to model prediction errors. Without rigorous uncertainty quantification, predictions become unreliable and hence hinder analysis. While methods like Monte Carlo dropout and ensemble models exist, they are often costly, fail to isolate uncertainty types, and lack guaranteed coverage in prediction intervals. To address this, we introduce ConfEviSurrogate, a novel Conformalized Evidential Surrogate Model that can efficiently learn high-order evidential distributions, directly predict simulation outcomes, separate uncertainty sources, and provide prediction intervals. A conformal prediction-based calibration step further enhances interval reliability to ensure coverage and improve efficiency. Our ConfEviSurrogate demonstrates accurate predictions and robust uncertainty estimates in diverse simulations, including cosmology, ocean dynamics, and fluid dynamics.


SurroFlow: A Flow-Based Surrogate Model for Parameter Space Exploration and Uncertainty Quantification

arXiv.org Artificial Intelligence

Existing deep learning-based surrogate models facilitate efficient data generation, but fall short in uncertainty quantification, efficient parameter space exploration, and reverse prediction. In our work, we introduce SurroFlow, a novel normalizing flow-based surrogate model, to learn the invertible transformation between simulation parameters and simulation outputs. The model not only allows accurate predictions of simulation outcomes for a given simulation parameter but also supports uncertainty quantification in the data generation process. Additionally, it enables efficient simulation parameter recommendation and exploration. We integrate SurroFlow and a genetic algorithm as the backend of a visual interface to support effective user-guided ensemble simulation exploration and visualization. Our framework significantly reduces the computational costs while enhancing the reliability and exploration capabilities of scientific surrogate models.


Improving Efficiency of Iso-Surface Extraction on Implicit Neural Representations Using Uncertainty Propagation

arXiv.org Artificial Intelligence

Implicit Neural representations (INRs) are widely used for scientific data reduction and visualization by modeling the function that maps a spatial location to a data value. Without any prior knowledge about the spatial distribution of values, we are forced to sample densely from INRs to perform visualization tasks like iso-surface extraction which can be very computationally expensive. Recently, range analysis has shown promising results in improving the efficiency of geometric queries, such as ray casting and hierarchical mesh extraction, on INRs for 3D geometries by using arithmetic rules to bound the output range of the network within a spatial region. However, the analysis bounds are often too conservative for complex scientific data. In this paper, we present an improved technique for range analysis by revisiting the arithmetic rules and analyzing the probability distribution of the network output within a spatial region. We model this distribution efficiently as a Gaussian distribution by applying the central limit theorem. Excluding low probability values, we are able to tighten the output bounds, resulting in a more accurate estimation of the value range, and hence more accurate identification of iso-surface cells and more efficient iso-surface extraction on INRs. Our approach demonstrates superior performance in terms of the iso-surface extraction time on four datasets compared to the original range analysis method and can also be generalized to other geometric query tasks.


SmartGD: A GAN-Based Graph Drawing Framework for Diverse Aesthetic Goals

arXiv.org Artificial Intelligence

While a multitude of studies have been conducted on graph drawing, many existing methods only focus on optimizing a single aesthetic aspect of graph layouts, which can lead to sub-optimal results. There are a few existing methods that have attempted to develop a flexible solution for optimizing different aesthetic aspects measured by different aesthetic criteria. Furthermore, thanks to the significant advance in deep learning techniques, several deep learning-based layout methods were proposed recently. These methods have demonstrated the advantages of deep learning approaches for graph drawing. However, none of these existing methods can be directly applied to optimizing non-differentiable criteria without special accommodation. In this work, we propose a novel Generative Adversarial Network (GAN) based deep learning framework for graph drawing, called SmartGD, which can optimize different quantitative aesthetic goals, regardless of their differentiability. To demonstrate the effectiveness and efficiency of SmartGD, we conducted experiments on minimizing stress, minimizing edge crossing, maximizing crossing angle, maximizing shape-based metrics, and a combination of multiple aesthetics. Compared with several popular graph drawing algorithms, the experimental results show that SmartGD achieves good performance both quantitatively and qualitatively.


PSRFlow: Probabilistic Super Resolution with Flow-Based Models for Scientific Data

arXiv.org Artificial Intelligence

Although many deep-learning-based super-resolution approaches have been proposed in recent years, because no ground truth is available in the inference stage, few can quantify the errors and uncertainties of the super-resolved results. For scientific visualization applications, however, conveying uncertainties of the results to scientists is crucial to avoid generating misleading or incorrect information. In this paper, we propose PSRFlow, a novel normalizing flow-based generative model for scientific data super-resolution that incorporates uncertainty quantification into the super-resolution process. PSRFlow learns the conditional distribution of the high-resolution data based on the low-resolution counterpart. By sampling from a Gaussian latent space that captures the missing information in the high-resolution data, one can generate different plausible super-resolution outputs. The efficient sampling in the Gaussian latent space allows our model to perform uncertainty quantification for the super-resolved results. During model training, we augment the training data with samples across various scales to make the model adaptable to data of different scales, achieving flexible super-resolution for a given input. Our results demonstrate superior performance and robust uncertainty quantification compared with existing methods such as interpolation and GAN-based super-resolution networks.


Neural Stream Functions

arXiv.org Artificial Intelligence

We present a neural network approach to compute stream functions, which are scalar functions with gradients orthogonal to a given vector field. As a result, isosurfaces of the stream function extract stream surfaces, which can be visualized to analyze flow features. Our approach takes a vector field as input and trains an implicit neural representation to learn a stream function for that vector field. The network learns to map input coordinates to a stream function value by minimizing the inner product of the gradient of the neural network's output and the vector field. Since stream function solutions may not be unique, we give optional constraints for the network to learn particular stream functions of interest. Specifically, we introduce regularizing loss functions that can optionally be used to generate stream function solutions whose stream surfaces follow the flow field's curvature, or that can learn a stream function that includes a stream surface passing through a seeding rake. We also discuss considerations for properly visualizing the trained implicit network and extracting artifact-free surfaces. We compare our results with other implicit solutions and present qualitative and quantitative results for several synthetic and simulated vector fields.


SKG: A Versatile Information Retrieval and Analysis Framework for Academic Papers with Semantic Knowledge Graphs

arXiv.org Artificial Intelligence

The number of published research papers has experienced exponential growth in recent years, which makes it crucial to develop new methods for efficient and versatile information extraction and knowledge discovery. To address this need, we propose a Semantic Knowledge Graph (SKG) that integrates semantic concepts from abstracts and other meta-information to represent the corpus. The SKG can support various semantic queries in academic literature thanks to the high diversity and rich information content stored within. To extract knowledge from unstructured text, we develop a Knowledge Extraction Module that includes a semi-supervised pipeline for entity extraction and entity normalization. We also create an ontology to integrate the concepts with other meta information, enabling us to build the SKG. Furthermore, we design and develop a dataflow system that demonstrates how to conduct various semantic queries flexibly and interactively over the SKG. To demonstrate the effectiveness of our approach, we conduct the research based on the visualization literature and provide real-world use cases to show the usefulness of the SKG. The dataset and codes for this work are available at https://osf.io/aqv8p/?view_only=2c26b36e3e3941ce999df47e4616207f.


On the Importance and Applicability of Pre-Training for Federated Learning

arXiv.org Artificial Intelligence

Pre-training is prevalent in nowadays deep learning to improve the learned model's performance. However, in the literature on federated learning (FL), neural networks are mostly initialized with random weights. These attract our interest in conducting a systematic study to explore pre-training for FL. Across multiple visual recognition benchmarks, we found that pre-training can not only improve FL, but also close its accuracy gap to the counterpart centralized learning, especially in the challenging cases of non-IID clients' data. To make our findings applicable to situations where pre-trained models are not directly available, we explore pre-training with synthetic data or even with clients' data in a decentralized manner, and found that they can already improve FL notably. Interestingly, many of the techniques we explore are complementary to each other to further boost the performance, and we view this as a critical result toward scaling up deep FL for real-world applications. We conclude our paper with an attempt to understand the effect of pre-training on FL. We found that pre-training enables the learned global models under different clients' data conditions to converge to the same loss basin, and makes global aggregation in FL more stable. Nevertheless, pre-training seems to not alleviate local model drifting, a fundamental problem in FL under non-IID data.


GNNInterpreter: A Probabilistic Generative Model-Level Explanation for Graph Neural Networks

arXiv.org Artificial Intelligence

Recently, Graph Neural Networks (GNNs) have significantly advanced the performance of machine learning tasks on graphs. However, this technological breakthrough makes people wonder: how does a GNN make such decisions, and can we trust its prediction with high confidence? When it comes to some critical fields, such as biomedicine, where making wrong decisions can have severe consequences, it is crucial to interpret the inner working mechanisms of GNNs before applying them. In this paper, we propose a model-agnostic model-level explanation method for different GNNs that follow the message passing scheme, GNNInterpreter, to explain the high-level decision-making process of the GNN model. More specifically, GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect when making a certain prediction by optimizing a novel objective function specifically designed for the model-level explanation for GNNs. Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features, without introducing another blackbox or requiring manually specified domain-specific rules. In addition, the experimental studies conducted on four different datasets demonstrate that the explanation graphs generated by GNNInterpreter match the desired graph pattern if the model is ideal; otherwise, potential model pitfalls can be revealed by the explanation.


IDLat: An Importance-Driven Latent Generation Method for Scientific Data

arXiv.org Artificial Intelligence

Abstract-- Deep learning based latent representations have been widely used for numerous scientific visualization applications such as isosurface similarity analysis, volume rendering, flow field synthesis, and data reduction, just to name a few. However, existing latent representations are mostly generated from raw data in an unsupervised manner, which makes it difficult to incorporate domain interest to control the size of the latent representations and the quality of the reconstructed data. In this paper, we present a novel importance-driven latent representation to facilitate domain-interest-guided scientific data visualization and analysis. We utilize spatial importance maps to represent various scientific interests and take them as the input to a feature transformation network to guide latent generation. We further reduced the latent size by a lossless entropy encoding algorithm trained together with the autoencoder, improving the storage and memory efficiency. We qualitatively and quantitatively evaluate the effectiveness and efficiency of latent representations generated by our method with data from multiple scientific visualization applications. First, to incorporate domain by autoencoders have attracted great attentions of researchers in recent interests into latent representations, we extend the basic autoencoder years. Latent representations have been successfully demonstrated to with a feature transformation network that takes domain interest as an retain essential information in the original data, and can be used for input to guide the mapping from scientific data to latent representations. Every been applied to multivariate volumetric data [28], streamlines and element in the importance map is a real value indicating how vital this stream surfaces [18], isosurfaces [12], and particles [25]. The importance Although latent representations for large-scale scientific data have values can be derived mathematically based on the domain or been used extensively, there are still several challenges. First, domain heuristically based on distances, distributions, locations, etc., depending scientists have diverse interests in different data portions, but latent on the underlying scientific applications.