Goto

Collaborating Authors

 Shah, Mohak


A Social Outcomes and Priorities centered (SOP) Framework for AI policy

arXiv.org Artificial Intelligence

Rapid developments in AI and its adoption across various domains have necessitated a need to build robust guardrails and risk containment plans while ensuring equitable benefits for the betterment of society. The current technology-centered approach has resulted in a fragmented, reactive, and ineffective policy apparatus. This paper highlights the immediate and urgent need to pivot to a society-centered approach to develop comprehensive, coherent, forward-looking AI policy. To this end, we present a Social Outcomes and Priorities centered (SOP) framework for AI policy along with proposals on implementation of its various components. While the SOP framework is presented from a US-centric view, the takeaways are general and applicable globally.


Evolving GANs: When Contradictions Turn into Compliance

arXiv.org Artificial Intelligence

Limited availability of labeled-data makes any supervised learning problem challenging. Alternative learning settings like semi-supervised and universum learning alleviate the dependency on labeled data, but still require a large amount of unlabeled data, which may be unavailable or expensive to acquire. GAN-based synthetic data generation methods have recently shown promise by generating synthetic samples to improve task at hand. However, these samples cannot be used for other purposes. In this paper, we propose a GAN game which provides improved discriminator accuracy under limited data settings, while generating realistic synthetic data. This provides the added advantage that now the generated data can be used for other similar tasks. We provide the theoretical guarantees and empirical results in support of our approach.


Stabilizing Bi-Level Hyperparameter Optimization using Moreau-Yosida Regularization

arXiv.org Machine Learning

This research proposes to use the Moreau-Yosida envelope to stabilize the convergence behavior of bi-level Hyperparameter optimization solvers, and introduces the new algorithm called Moreau-Yosida regularized Hyperparameter Optimization (MY-HPO) algorithm. Theoretical analysis on the correctness of the MY-HPO solution and initial convergence analysis is also provided. Our empirical results show significant improvement in loss values for a fixed computation budget, compared to the state-of-art bi-level HPO solvers.


Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey

arXiv.org Machine Learning

With the general trend of increasing Convolutional Neural Network (CNN) model sizes, model compression and acceleration techniques have become critical for the deployment of these models on edge devices. In this paper, we provide a comprehensive survey on Pruning, a major compression strategy that removes non-critical or redundant neurons from a CNN model. The survey covers the overarching motivation for pruning, different strategies and criteria, their advantages and drawbacks, along with a compilation of major pruning techniques. We conclude the survey with a discussion on alternatives to pruning and current challenges for the model compression community.


Multiclass Learning from Contradictions

Neural Information Processing Systems

We introduce the notion of learning from contradictions, a.k.a We show that learning from contradictions (using MU-SVM) incurs lower sample complexity compared to multiclass SVM (M-SVM) by deriving the Natarajan dimension for sample complexity for PAC-learnability of MU-SVM. We also propose an analytic span bound for MU-SVM and demonstrate its utility for model selection resulting in $\sim 2-4 \times$ faster computation times than standard resampling techniques. We empirically demonstrate the efficacy of MU- SVM on several real world datasets achieving $ $ 20\% improvement in test accuracies compared to M-SVM. Insights into the underlying behavior of MU-SVM using a histograms-of-projections method are also provided.


Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwein Stepsize

arXiv.org Machine Learning

Variable metric proximal gradient (VM-PG) is a widely used class of convex optimization method. Lately, there has been a lot of research on the theoretical guarantees of VM-PG with different metric selections. However, most such metric selections are dependent on (an expensive) Hessian, or limited to scalar stepsizes like the Barzilai-Borwein (BB) stepsize with lots of safeguarding. Instead, in this paper we propose an adaptive metric selection strategy called the diagonal Barzilai-Borwein (BB) stepsize. The proposed diagonal selection better captures the local geometry of the problem while keeping per-step computation cost similar to the scalar BB stepsize i.e. $O(n)$. Under this metric selection for VM-PG, the theoretical convergence is analyzed. Our empirical studies illustrate the improved convergence results under the proposed diagonal BB stepsize, specifically for ill-conditioned machine learning problems for both synthetic and real-world datasets.


Robust Neural Network Training using Periodic Sampling over Model Weights

arXiv.org Machine Learning

Deep neural networks provide best-in-class performance for a number of computer vision problems. However, training these networks is computationally intensive and requires fine-tuning various hyperparameters. In addition, performance swings widely as the network converges making it hard to decide when to stop training. In this paper, we introduce a trio of techniques (PSWA, PWALKS, and PSWM) centered around periodic sampling of model weights that provide consistent and more robust convergence on a variety of vision problems (classification, detection, segmentation) and gradient update methods (vanilla SGD, Momentum, Adam) with marginal additional computation time. Our techniques use existing optimal training policies but converge in a less volatile fashion with performance improvements that are approximately monotonic. Our analysis of the loss surface shows that these techniques also produce minima that are deeper and wider than those found by SGD.


Is it Safe to Drive? An Overview of Factors, Challenges, and Datasets for Driveability Assessment in Autonomous Driving

arXiv.org Artificial Intelligence

Is it Safe to Drive? Abstract--With recent advances in learning algorithms and hardware development, autonomous cars have shown promise when operating in structured environments under good driving conditions. However, for complex, cluttered and unseen environments withhigh uncertainty, autonomous driving systems still frequently demonstrate erroneous or unexpected behaviors, that could lead to catastrophic outcomes. Autonomous vehicles should ideally adapt to driving conditions; while this can be achieved through multiple routes, it would be beneficial as a first step to be able to characterize Driveability in some quantified form. To this end, this paper aims to create a framework for investigating different factors that can impact driveability. Also, one of the main mechanisms to adapt autonomous driving systems to any driving condition is to be able to learn and generalize from representative scenarios. The machine learning algorithms that currently do so learn predominantly in a supervised manner and consequently need sufficient data for robust and efficient learning. Specifically,we categorize the datasets according to use cases, and highlight the datasets that capture complicated and hazardous driving conditions which can be better used for training robust driving models. Furthermore, by discussions of what driving scenarios are not covered by existing public datasets and what driveability factors need more investigation and data acquisition, this paper aims to encourage both targeted dataset collection and the proposal of novel driveability metrics that enhance the robustness of autonomous cars in adverse environments. I. INTRODUCTION Despite testing autonomous cars in highly controlled settings, thesecars still occasionally fail in making correct decisions, often with catastrophic results According to the accident records, the failures are most likely to happen in complex or unseen driving environments. The fact remains that while autonomous cars can operate well in controlled or structured environments such as highways, they are still far from reliable when operating in cluttered, unstructured or unseen environments [2]. These apply to autonomous vehicles in general. Thesetwo different application fields also suggest that driveability could be quantified in different forms, either as a single metric or a composition of metrics. For example, with ADAS and current Level 2 or 3 autonomy, a scene can be simply defined as driveable if the car can operate safely in autonomous mode. When a non-driveable scene is detected, the autonomous car can hand over control to the human driver in a timely manner [4].


Multiclass Universum SVM

arXiv.org Machine Learning

We introduce Universum learning for multiclass problems and propose a novel formulation for multiclass universum SVM (MU-SVM). We also propose an analytic span bound for model selection with almost 2-4x faster computation times than standard resampling techniques. We empirically demonstrate the efficacy of the proposed MUSVM formulation on several real world datasets achieving > 20% improvement in test accuracies compared to multi-class SVM.


Make (Nearly) Every Neural Network Better: Generating Neural Network Ensembles by Weight Parameter Resampling

arXiv.org Machine Learning

Deep Neural Networks (DNNs) have become increasingly popular in computer vision, natural language processing, and other areas. However, training and fine-tuning a deep learning model is computationally intensive and time-consuming. We propose a new method to improve the performance of nearly every model including pre-trained models. The proposed method uses an ensemble approach where the networks in the ensemble are constructed by reassigning model parameter values based on the probabilistic distribution of these parameters, calculated towards the end of the training process. For pre-trained models, this approach results in an additional training step (usually less than one epoch). We perform a variety of analysis using the MNIST dataset and validate the approach with a number of DNN models using pre-trained models on the ImageNet dataset.