Goto

Collaborating Authors

 Shafei, Behrang


BARK: A Fully Bayesian Tree Kernel for Black-box Optimization

arXiv.org Machine Learning

We perform Bayesian optimization using a Gaussian process perspective on Bayesian Additive Regression Trees (BART). Our BART Kernel (BARK) uses tree agreement to define a posterior over piecewise-constant functions, and we explore the space of tree kernels using a Markov chain Monte Carlo approach. Where BART only samples functions, the resulting BARK model obtains samples of Gaussian processes defining distributions over functions, which allow us to build acquisition functions for Bayesian optimization. Our tree-based approach enables global optimization over the surrogate, even for mixed-feature spaces. Moreover, where many previous tree-based kernels provide uncertainty quantification over function values, our sampling scheme captures uncertainty over the tree structure itself. Our experiments show the strong performance of BARK on both synthetic and applied benchmarks, due to the combination of our fully Bayesian surrogate and the optimization procedure.


Scalarisation-based risk concepts for robust multi-objective optimisation

arXiv.org Machine Learning

Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective case of this problem. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to account for the uncertainty in the problem. Scalarisation refers to the procedure that is used to encode the relative importance of each objective to a scalar-valued reward. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. The purpose of this work is to give a thorough exposition on the effects of these different orderings and in particular highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our ``robustify and scalarise'' methodology. To illustrate the efficacy of these new ideas, we present two insightful case studies which are based on real-world data sets.


Random Pareto front surfaces

arXiv.org Machine Learning

The goal of multi-objective optimisation is to identify the Pareto front surface which is the set obtained by connecting the best trade-off points. Typically this surface is computed by evaluating the objectives at different points and then interpolating between the subset of the best evaluated trade-off points. In this work, we propose to parameterise the Pareto front surface using polar coordinates. More precisely, we show that any Pareto front surface can be equivalently represented using a scalar-valued length function which returns the projected length along any positive radial direction. We then use this representation in order to rigorously develop the theory and applications of stochastic Pareto front surfaces. In particular, we derive many Pareto front surface statistics of interest such as the expectation, covariance and quantiles. We then discuss how these can be used in practice within a design of experiments setting, where the goal is to both infer and use the Pareto front surface distribution in order to make effective decisions. Our framework allows for clear uncertainty quantification and we also develop advanced visualisation techniques for this purpose. Finally we discuss the applicability of our ideas within multivariate extreme value theory and illustrate our methodology in a variety of numerical examples, including a case study with a real-world air pollution data set.


System-Aware Neural ODE Processes for Few-Shot Bayesian Optimization

arXiv.org Artificial Intelligence

We consider the problem of optimizing initial conditions and timing in dynamical systems governed by unknown ordinary differential equations (ODEs), where evaluating different initial conditions is costly and there are constraints on observation times. To identify the optimal conditions within several trials, we introduce a few-shot Bayesian Optimization (BO) framework based on the system's prior information. At the core of our approach is the System-Aware Neural ODE Processes (SANODEP), an extension of Neural ODE Processes (NODEP) designed to meta-learn ODE systems from multiple trajectories using a novel context embedding block. Additionally, we propose a multi-scenario loss function specifically for optimization purposes. Our two-stage BO framework effectively incorporates search space constraints, enabling efficient optimization of both initial conditions and observation timings. We conduct extensive experiments showcasing SANODEP's potential for few-shot BO. We also explore SANODEP's adaptability to varying levels of prior information, highlighting the trade-off between prior flexibility and model fitting accuracy.


Transition Constrained Bayesian Optimization via Markov Decision Processes

arXiv.org Artificial Intelligence

Bayesian optimization is a methodology to optimize black-box functions. Traditionally, it focuses on the setting where you can arbitrarily query the search space. However, many real-life problems do not offer this flexibility; in particular, the search space of the next query may depend on previous ones. Example challenges arise in the physical sciences in the form of local movement constraints, required monotonicity in certain variables, and transitions influencing the accuracy of measurements. Altogether, such transition constraints necessitate a form of planning. This work extends Bayesian optimization via the framework of Markov Decision Processes, iteratively solving a tractable linearization of our objective using reinforcement learning to obtain a policy that plans ahead over long horizons. The resulting policy is potentially history-dependent and non-Markovian. We showcase applications in chemical reactor optimization, informative path planning, machine calibration, and other synthetic examples.


Practical Path-based Bayesian Optimization

arXiv.org Artificial Intelligence

There has been a surge in interest in data-driven experimental design with applications to chemical engineering and drug manufacturing. Bayesian optimization (BO) has proven to be adaptable to such cases, since we can model the reactions of interest as expensive black-box functions. Sometimes, the cost of this black-box functions can be separated into two parts: (a) the cost of the experiment itself, and (b) the cost of changing the input parameters. In this short paper, we extend the SnAKe algorithm to deal with both types of costs simultaneously. We further propose extensions to the case of a maximum allowable input change, as well as to the multi-objective setting.


Multi-Objective Optimization Using the R2 Utility

arXiv.org Machine Learning

The goal of multi-objective optimization is to identify a collection of points which describe the best possible trade-offs between the multiple objectives. In order to solve this vector-valued optimization problem, practitioners often appeal to the use of scalarization functions in order to transform the multi-objective problem into a collection of single-objective problems. This set of scalarized problems can then be solved using traditional single-objective optimization techniques. In this work, we formalise this convention into a general mathematical framework. We show how this strategy effectively recasts the original multi-objective optimization problem into a single-objective optimization problem defined over sets. An appropriate class of objective functions for this new problem is the R2 utility function, which is defined as a weighted integral over the scalarized optimization problems. We show that this utility function is a monotone and submodular set function, which can be optimised effectively using greedy optimization algorithms. We analyse the performance of these greedy algorithms both theoretically and empirically. Our analysis largely focusses on Bayesian optimization, which is a popular probabilistic framework for black-box optimization.


Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian Optimization

arXiv.org Artificial Intelligence

The optimal design of many engineering processes can be subject to expensive and time-consuming experimentation. For efficiency, we seek to avoid wasting valuable resources in testing sub-optimal designs. One way to achieve this is by obtaining cheaper approximations of the desired system, which allow us to quickly explore new regimes and avoid areas that are clearly sub-optimal. As an example, consider the case diagrammed in Figure 1 from battery materials research with the goal of designing electrode materials for optimal performance in pouch cells. We can use experiments with cheaper coin cells and shorter test procedures to approximate the behaviour of the material in longer stability tests in pouch cells, which is in turn closer to the expected performance in electric car applications [Chen et al., 2019, Dörfler et al., 2020, Liu et al., 2021]. Similarly, design goals regarding battery life such as discharge capacity retention can be approximated using an early prediction model on the first few charge cycles rather than running aging and stability tests to completion [Attia et al., 2020].


Tree ensemble kernels for Bayesian optimization with known constraints over mixed-feature spaces

arXiv.org Artificial Intelligence

Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search, as they achieve good predictive performance with little or no manual tuning, naturally handle discrete feature spaces, and are relatively insensitive to outliers in the training data. Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function. To address both points simultaneously, we propose using the kernel interpretation of tree ensembles as a Gaussian Process prior to obtain model variance estimates, and we develop a compatible optimization formulation for the acquisition function. The latter further allows us to seamlessly integrate known constraints to improve sampling efficiency by considering domain-knowledge in engineering settings and modeling search space symmetries, e.g., hierarchical relationships in neural architecture search. Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.