Goto

Collaborating Authors

 Sekhari, Ayush


GaussMark: A Practical Approach for Structural Watermarking of Language Models

arXiv.org Artificial Intelligence

Recent advances in Large Language Models (LLMs) have led to significant improvements in natural language processing tasks, but their ability to generate human-quality text raises significant ethical and operational concerns in settings where it is important to recognize whether or not a given text was generated by a human. Thus, recent work has focused on developing techniques for watermarking LLM-generated text, i.e., introducing an almost imperceptible signal that allows a provider equipped with a secret key to determine if given text was generated by their model. Current watermarking techniques are often not practical due to concerns with generation latency, detection time, degradation in text quality, or robustness. Many of these drawbacks come from the focus on token-level watermarking, which ignores the inherent structure of text. In this work, we introduce a new scheme, GaussMark, that is simple and efficient to implement, has formal statistical guarantees on its efficacy, comes at no cost in generation latency, and embeds the watermark into the weights of the model itself, providing a structural watermark. Our approach is based on Gaussian independence testing and is motivated by recent empirical observations that minor additive corruptions to LLM weights can result in models of identical (or even improved) quality. We show that by adding a small amount of Gaussian noise to the weights of a given LLM, we can watermark the model in a way that is statistically detectable by a provider who retains the secret key. We provide formal statistical bounds on the validity and power of our procedure. Through an extensive suite of experiments, we demonstrate that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations and can be instantiated with essentially no loss in model quality.


Unstable Unlearning: The Hidden Risk of Concept Resurgence in Diffusion Models

arXiv.org Artificial Intelligence

Text-to-image diffusion models rely on massive, web-scale datasets. Training them from scratch is computationally expensive, and as a result, developers often prefer to make incremental updates to existing models. These updates often compose fine-tuning steps (to learn new concepts or improve model performance) with "unlearning" steps (to "forget" existing concepts, such as copyrighted works or explicit content). In this work, we demonstrate a critical and previously unknown vulnerability that arises in this paradigm: even under benign, non-adversarial conditions, fine-tuning a text-to-image diffusion model on seemingly unrelated images can cause it to "relearn" concepts that were previously "unlearned." We comprehensively investigate the causes and scope of this phenomenon, which we term concept resurgence, by performing a series of experiments which compose "mass concept erasure" (the current state of the art for unlearning in text-to-image diffusion models (Lu et al., 2024)) with subsequent fine-tuning of Stable Diffusion v1.4. Our findings underscore the fragility of composing incremental model updates, and raise serious new concerns about current approaches to ensuring the safety and alignment of text-to-image diffusion models.


Random Latent Exploration for Deep Reinforcement Learning

arXiv.org Artificial Intelligence

The ability to efficiently explore high-dimensional state spaces is essential for the practical success of deep Reinforcement Learning (RL). This paper introduces a new exploration technique called Random Latent Exploration (RLE), that combines the strengths of bonus-based and noise-based (two popular approaches for effective exploration in deep RL) exploration strategies. RLE leverages the idea of perturbing rewards by adding structured random rewards to the original task rewards in certain (random) states of the environment, to encourage the agent to explore the environment during training. RLE is straightforward to implement and performs well in practice. To demonstrate the practical effectiveness of RLE, we evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches.


Langevin Dynamics: A Unified Perspective on Optimization via Lyapunov Potentials

arXiv.org Artificial Intelligence

We study the problem of non-convex optimization using Stochastic Gradient Langevin Dynamics (SGLD). SGLD is a natural and popular variation of stochastic gradient descent where at each step, appropriately scaled Gaussian noise is added. To our knowledge, the only strategy for showing global convergence of SGLD on the loss function is to show that SGLD can sample from a stationary distribution which assigns larger mass when the function is small (the Gibbs measure), and then to convert these guarantees to optimization results. We employ a new strategy to analyze the convergence of SGLD to global minima, based on Lyapunov potentials and optimization. We convert the same mild conditions from previous works on SGLD into geometric properties based on Lyapunov potentials. This adapts well to the case with a stochastic gradient oracle, which is natural for machine learning applications where one wants to minimize population loss but only has access to stochastic gradients via minibatch training samples. Here we provide 1) improved rates in the setting of previous works studying SGLD for optimization, 2) the first finite gradient complexity guarantee for SGLD where the function is Lipschitz and the Gibbs measure defined by the function satisfies a Poincar\'e Inequality, and 3) prove if continuous-time Langevin Dynamics succeeds for optimization, then discrete-time SGLD succeeds under mild regularity assumptions.


Computationally Efficient RL under Linear Bellman Completeness for Deterministic Dynamics

arXiv.org Artificial Intelligence

In such settings, the learner aims to find a well performing policy by repeated interactions with the environment to acquire knowledge. Due to the high dimensionality of the problem, function approximation techniques are used to generalize the knowledge acquired across the state and action space. Under the broad category of function approximation, model-free RL stands out as a particularly popular approach due to its simplicity of implementation and relatively low sample efficiency in practice. In model-free RL, the learner uses function approximation (e.g., an expressive function class like deep neural networks) to model the state-action value function of various policies in the underlying MDP. In fact, the combination of model-free RL with various empirical exploration heuristics has led to notable empirical advances, including breakthroughs in game playing (Silver et al., 2016; Berner et al., 2019), robot manipulation (Andrychowicz et al., 2020), and self-driving (Chen et al., 2019). Theoretical advancements have paralleled the practical successes in RL, with tremendous progress in recent years in building rigorous statistical foundations to understand what structures in the environment and the function class suffice for sample-efficient RL.


Offline Reinforcement Learning: Role of State Aggregation and Trajectory Data

arXiv.org Machine Learning

We revisit the problem of offline reinforcement learning with value function realizability but without Bellman completeness. Previous work by Xie and Jiang (2021) and Foster et al. (2022) left open the question whether a bounded concentrability coefficient along with trajectory-based offline data admits a polynomial sample complexity. In this work, we provide a negative answer to this question for the task of offline policy evaluation. In addition to addressing this question, we provide a rather complete picture for offline policy evaluation with only value function realizability. Our primary findings are threefold: 1) The sample complexity of offline policy evaluation is governed by the concentrability coefficient in an aggregated Markov Transition Model jointly determined by the function class and the offline data distribution, rather than that in the original MDP. This unifies and generalizes the ideas of Xie and Jiang (2021) and Foster et al. (2022), 2) The concentrability coefficient in the aggregated Markov Transition Model may grow exponentially with the horizon length, even when the concentrability coefficient in the original MDP is small and the offline data is admissible (i.e., the data distribution equals the occupancy measure of some policy), 3) Under value function realizability, there is a generic reduction that can convert any hard instance with admissible data to a hard instance with trajectory data, implying that trajectory data offers no extra benefits over admissible data. These three pieces jointly resolve the open problem, though each of them could be of independent interest.


Harnessing Density Ratios for Online Reinforcement Learning

arXiv.org Artificial Intelligence

The theories of offline and online reinforcement learning, despite having evolved in parallel, have begun to show signs of the possibility for a unification, with algorithms and analysis techniques for one setting often having natural counterparts in the other. However, the notion of density ratio modeling, an emerging paradigm in offline RL, has been largely absent from online RL, perhaps for good reason: the very existence and boundedness of density ratios relies on access to an exploratory dataset with good coverage, but the core challenge in online RL is to collect such a dataset without having one to start. In this work we show -- perhaps surprisingly -- that density ratio-based algorithms have online counterparts. Assuming only the existence of an exploratory distribution with good coverage, a structural condition known as coverability (Xie et al., 2023), we give a new algorithm (GLOW) that uses density ratio realizability and value function realizability to perform sample-efficient online exploration. GLOW addresses unbounded density ratios via careful use of truncation, and combines this with optimism to guide exploration. GLOW is computationally inefficient; we complement it with a more efficient counterpart, HyGLOW, for the Hybrid RL setting (Song et al., 2022) wherein online RL is augmented with additional offline data. HyGLOW is derived as a special case of a more general meta-algorithm that provides a provable black-box reduction from hybrid RL to offline RL, which may be of independent interest.


Offline Data Enhanced On-Policy Policy Gradient with Provable Guarantees

arXiv.org Machine Learning

Hybrid RL is the setting where an RL agent has access to both offline data and online data by interacting with the real-world environment. In this work, we propose a new hybrid RL algorithm that combines an on-policy actor-critic method with offline data. On-policy methods such as policy gradient and natural policy gradient (NPG) have shown to be more robust to model misspecification, though sometimes it may not be as sample efficient as methods that rely on off-policy learning. On the other hand, offline methods that depend on off-policy training often require strong assumptions in theory and are less stable to train in practice. Our new approach integrates a procedure of off-policy training on the offline data into an on-policy NPG framework. We show that our approach, in theory, can obtain a best-of-both-worlds type of result -- it achieves the state-of-art theoretical guarantees of offline RL when offline RL-specific assumptions hold, while at the same time maintaining the theoretical guarantees of on-policy NPG regardless of the offline RL assumptions' validity. Experimentally, in challenging rich-observation environments, we show that our approach outperforms a state-of-the-art hybrid RL baseline which only relies on off-policy policy optimization, demonstrating the empirical benefit of combining on-policy and off-policy learning. Our code is publicly available at https://github.com/YifeiZhou02/HNPG.


When is Agnostic Reinforcement Learning Statistically Tractable?

arXiv.org Machine Learning

We study the problem of agnostic PAC reinforcement learning (RL): given a policy class $\Pi$, how many rounds of interaction with an unknown MDP (with a potentially large state and action space) are required to learn an $\epsilon$-suboptimal policy with respect to $\Pi$? Towards that end, we introduce a new complexity measure, called the \emph{spanning capacity}, that depends solely on the set $\Pi$ and is independent of the MDP dynamics. With a generative model, we show that for any policy class $\Pi$, bounded spanning capacity characterizes PAC learnability. However, for online RL, the situation is more subtle. We show there exists a policy class $\Pi$ with a bounded spanning capacity that requires a superpolynomial number of samples to learn. This reveals a surprising separation for agnostic learnability between generative access and online access models (as well as between deterministic/stochastic MDPs under online access). On the positive side, we identify an additional \emph{sunflower} structure, which in conjunction with bounded spanning capacity enables statistically efficient online RL via a new algorithm called POPLER, which takes inspiration from classical importance sampling methods as well as techniques for reachable-state identification and policy evaluation in reward-free exploration.


Model-Free Reinforcement Learning with the Decision-Estimation Coefficient

arXiv.org Artificial Intelligence

We consider the problem of interactive decision making, encompassing structured bandits and reinforcement learning with general function approximation. Recently, Foster et al. (2021) introduced the Decision-Estimation Coefficient, a measure of statistical complexity that lower bounds the optimal regret for interactive decision making, as well as a meta-algorithm, Estimation-to-Decisions, which achieves upper bounds in terms of the same quantity. Estimation-to-Decisions is a reduction, which lifts algorithms for (supervised) online estimation into algorithms for decision making. In this paper, we show that by combining Estimation-to-Decisions with a specialized form of optimistic estimation introduced by Zhang (2022), it is possible to obtain guarantees that improve upon those of Foster et al. (2021) by accommodating more lenient notions of estimation error. We use this approach to derive regret bounds for model-free reinforcement learning with value function approximation, and give structural results showing when it can and cannot help more generally.