Segarra, Santiago
Fully Distributed Online Training of Graph Neural Networks in Networked Systems
Olshevskyi, Rostyslav, Zhao, Zhongyuan, Chan, Kevin, Verma, Gunjan, Swami, Ananthram, Segarra, Santiago
Graph neural networks (GNNs) are powerful tools for developing scalable, decentralized artificial intelligence in large-scale networked systems, such as wireless networks, power grids, and transportation networks. Currently, GNNs in networked systems mostly follow a paradigm of `centralized training, distributed execution', which limits their adaptability and slows down their development cycles. In this work, we fill this gap for the first time by developing a communication-efficient, fully distributed online training approach for GNNs applied to large networked systems. For a mini-batch with $B$ samples, our approach of training an $L$-layer GNN only adds $L$ rounds of message passing to the $LB$ rounds required by GNN inference, with doubled message sizes. Through numerical experiments in graph-based node regression, power allocation, and link scheduling in wireless networks, we demonstrate the effectiveness of our approach in training GNNs under supervised, unsupervised, and reinforcement learning paradigms.
Structure-Guided Input Graph for GNNs facing Heterophily
Tenorio, Victor M., Navarro, Madeline, Rey, Samuel, Segarra, Santiago, Marques, Antonio G.
Graph Neural Networks (GNNs) have emerged as a promising tool to handle data exhibiting an irregular structure. However, most GNN architectures perform well on homophilic datasets, where the labels of neighboring nodes are likely to be the same. In recent years, an increasing body of work has been devoted to the development of GNN architectures for heterophilic datasets, where labels do not exhibit this low-pass behavior. In this work, we create a new graph in which nodes are connected if they share structural characteristics, meaning a higher chance of sharing their labels, and then use this new graph in the GNN architecture. To do this, we compute the k-nearest neighbors graph according to distances between structural features, which are either (i) role-based, such as degree, or (ii) global, such as centrality measures. Experiments show that the labels are smoother in this newly defined graph and that the performance of GNN architectures improves when using this alternative structure.
Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks
Cox, Benjamin, Segarra, Santiago, Elvira, Victor
State-space models are a popular statistical framework for analysing sequential data. Within this framework, particle filters are often used to perform inference on non-linear state-space models. We introduce a new method, StateMixNN, that uses a pair of neural networks to learn the proposal distribution and transition distribution of a particle filter. Both distributions are approximated using multivariate Gaussian mixtures. The component means and covariances of these mixtures are learnt as outputs of learned functions. Our method is trained targeting the log-likelihood, thereby requiring only the observation series, and combines the interpretability of state-space models with the flexibility and approximation power of artificial neural networks. The proposed method significantly improves recovery of the hidden state in comparison with the state-of-the-art, showing greater improvement in highly non-linear scenarios.
ML-SPEAK: A Theory-Guided Machine Learning Method for Studying and Predicting Conversational Turn-taking Patterns
O'Bryan, Lisa R., Navarro, Madeline, Hevia, Juan Segundo, Segarra, Santiago
Predicting team dynamics from personality traits remains a fundamental challenge for the psychological sciences and team-based organizations. Understanding how team composition generates team processes can significantly advance team-based research along with providing practical guidelines for team staffing and training. Although the Input-Process-Output (IPO) model has been useful for studying these connections, the complex nature of team member interactions demands a more dynamic approach. We develop a computational model of conversational turn-taking within self-organized teams that can provide insight into the relationships between team member personality traits and team communication dynamics. We focus on turn-taking patterns between team members, independent of content, which can significantly influence team emergent states and outcomes while being objectively measurable and quantifiable. As our model is trained on conversational data from teams of given trait compositions, it can learn the relationships between individual traits and speaking behaviors and predict group-wide patterns of communication based on team trait composition alone. We first evaluate the performance of our model using simulated data and then apply it to real-world data collected from self-organized student teams. In comparison to baselines, our model is more accurate at predicting speaking turn sequences and can reveal new relationships between team member traits and their communication patterns. Our approach offers a more data-driven and dynamic understanding of team processes. By bridging the gap between individual personality traits and team communication patterns, our model has the potential to inform theories of team processes and provide powerful insights into optimizing team staffing and training.
Low-Rank Tensors for Multi-Dimensional Markov Models
Navarro, Madeline, Rozada, Sergio, Marques, Antonio G., Segarra, Santiago
This work presents a low-rank tensor model for multi-dimensional Markov chains. A common approach to simplify the dynamical behavior of a Markov chain is to impose low-rankness on the transition probability matrix. Inspired by the success of these matrix techniques, we present low-rank tensors for representing transition probabilities on multi-dimensional state spaces. Through tensor decomposition, we provide a connection between our method and classical probabilistic models. Moreover, our proposed model yields a parsimonious representation with fewer parameters than matrix-based approaches. Unlike these methods, which impose low-rankness uniformly across all states, our tensor method accounts for the multi-dimensionality of the state space. We also propose an optimization-based approach to estimate a Markov model as a low-rank tensor. Our optimization problem can be solved by the alternating direction method of multipliers (ADMM), which enjoys convergence to a stationary solution. We empirically demonstrate that our tensor model estimates Markov chains more efficiently than conventional techniques, requiring both fewer samples and parameters. We perform numerical simulations for both a synthetic low-rank Markov chain and a real-world example with New York City taxi data, showcasing the advantages of multi-dimensionality for modeling state spaces.
Scalable Implicit Graphon Learning
Azizpour, Ali, Zilberstein, Nicolas, Segarra, Santiago
Graphons are continuous models that represent the structure of graphs and allow the generation of graphs of varying sizes. We propose Scalable Implicit Graphon Learning (SIGL), a scalable method that combines implicit neural representations (INRs) and graph neural networks (GNNs) to estimate a graphon from observed graphs. Unlike existing methods, which face important limitations like fixed resolution and scalability issues, SIGL learns a continuous graphon at arbitrary resolutions. GNNs are used to determine the correct node ordering, improving graph alignment. Furthermore, we characterize the asymptotic consistency of our estimator, showing that more expressive INRs and GNNs lead to consistent estimators. We evaluate SIGL in synthetic and real-world graphs, showing that it outperforms existing methods and scales effectively to larger graphs, making it ideal for tasks like graph data augmentation.
Towards Safer Heuristics With XPlain
Karimi, Pantea, Pirelli, Solal, Kakarla, Siva Kesava Reddy, Beckett, Ryan, Segarra, Santiago, Li, Beibin, Namyar, Pooria, Arzani, Behnaz
Many problems that cloud operators solve are computationally expensive, and operators often use heuristic algorithms (that are faster and scale better than optimal) to solve them more efficiently. Heuristic analyzers enable operators to find when and by how much their heuristics underperform. However, these tools do not provide enough detail for operators to mitigate the heuristic's impact in practice: they only discover a single input instance that causes the heuristic to underperform (and not the full set), and they do not explain why. We propose XPlain, a tool that extends these analyzers and helps operators understand when and why their heuristics underperform. We present promising initial results that show such an extension is viable.
Redesigning graph filter-based GNNs to relax the homophily assumption
Rey, Samuel, Navarro, Madeline, Tenorio, Victor M., Segarra, Santiago, Marques, Antonio G.
Graph neural networks (GNNs) have become a workhorse approach for learning from data defined over irregular domains, typically by implicitly assuming that the data structure is represented by a homophilic graph. However, recent works have revealed that many relevant applications involve heterophilic data where the performance of GNNs can be notably compromised. To address this challenge, we present a simple yet effective architecture designed to mitigate the limitations of the homophily assumption. The proposed architecture reinterprets the role of graph filters in convolutional GNNs, resulting in a more general architecture while incorporating a stronger inductive bias than GNNs based on filter banks. The proposed convolutional layer enhances the expressive capacity of the architecture enabling it to learn from both homophilic and heterophilic data and preventing the issue of oversmoothing. From a theoretical standpoint, we show that the proposed architecture is permutation equivariant. Finally, we show that the proposed GNNs compares favorably relative to several state-of-the-art baselines in both homophilic and heterophilic datasets, showcasing its promising potential.
Biased Backpressure Routing Using Link Features and Graph Neural Networks
Zhao, Zhongyuan, Radojičić, Bojan, Verma, Gunjan, Swami, Ananthram, Segarra, Santiago
To reduce the latency of Backpressure (BP) routing in wireless multi-hop networks, we propose to enhance the existing shortest path-biased BP (SP-BP) and sojourn time-based backlog metrics, since they introduce no additional time step-wise signaling overhead to the basic BP. Rather than relying on hop-distance, we introduce a new edge-weighted shortest path bias built on the scheduling duty cycle of wireless links, which can be predicted by a graph convolutional neural network based on the topology and traffic of wireless networks. Additionally, we tackle three long-standing challenges associated with SP-BP: optimal bias scaling, efficient bias maintenance, and integration of delay awareness. Our proposed solutions inherit the throughput optimality of the basic BP, as well as its practical advantages of low complexity and fully distributed implementation. Our approaches rely on common link features and introduces only a one-time constant overhead to previous SP-BP schemes, or a one-time overhead linear in the network size to the basic BP. Numerical experiments show that our solutions can effectively address the major drawbacks of slow startup, random walk, and the last packet problem in basic BP, improving the end-to-end delay of existing low-overhead BP algorithms under various settings of network traffic, interference, and mobility.
Efficient Path Planning with Soft Homology Constraints
Taveras, Carlos A., Segarra, Santiago, Uribe, César A.
We study the problem of path planning with soft homology constraints on a surface topologically equivalent to a disk with punctures. Specifically, we propose an algorithm, named $\Hstar$, for the efficient computation of a path homologous to a user-provided reference path. We show that the algorithm can generate a suite of paths in distinct homology classes, from the overall shortest path to the shortest path homologous to the reference path, ordered both by path length and similarity to the reference path. Rollout is shown to improve the results produced by the algorithm. Experiments demonstrate that $\Hstar$ can be an efficient alternative to optimal methods, especially for configuration spaces with many obstacles.