Sebastian, Eduardo
Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
Sebastian, Eduardo, Duong, Thai, Atanasov, Nikolay, Montijano, Eduardo, Sagues, Carlos
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time).
Learning to Identify Graphs from Node Trajectories in Multi-Robot Networks
Sebastian, Eduardo, Duong, Thai, Atanasov, Nikolay, Montijano, Eduardo, Sagues, Carlos
The graph identification problem consists of discovering the interactions among nodes in a network given their state/feature trajectories. This problem is challenging because the behavior of a node is coupled to all the other nodes by the unknown interaction model. Besides, high-dimensional and nonlinear state trajectories make it difficult to identify if two nodes are connected. Current solutions rely on prior knowledge of the graph topology and the dynamic behavior of the nodes, and hence, have poor generalization to other network configurations. To address these issues, we propose a novel learning-based approach that combines (i) a strongly convex program that efficiently uncovers graph topologies with global convergence guarantees and (ii) a self-attention encoder that learns to embed the original state trajectories into a feature space and predicts appropriate regularizers for the optimization program. In contrast to other works, our approach can identify the graph topology of unseen networks with new configurations in terms of number of nodes, connectivity or state trajectories. We demonstrate the effectiveness of our approach in identifying graphs in multi-robot formation and flocking tasks.
Distributed outer approximation of the intersection of ellipsoids
Aldana-Lopez, Rodrigo, Sebastian, Eduardo, Aragues, Rosario, Montijano, Eduardo, Sagues, Carlos
The outer Lowner-John method is widely used in sensor fusion applications to find the smallest ellipsoid that can approximate the intersection of a set of ellipsoids, described by positive definite covariance matrices modeling the quality of each sensor. We propose a distributed algorithm to solve this problem when these matrices are defined over the network's nodes. This is of particular significance as it is the first decentralized algorithm capable of computing the covariance intersection ellipsoid by combining information from the entire network using only local interactions. The solution is based on a reformulation of the centralized problem, leading to a local protocol based on exact dynamic consensus tools. After reaching consensus, the protocol converges to an outer Lowner-John ellipsoid in finite time, and to the global optimum asymptotically. Formal convergence analysis and numerical experiments are provided to validate the proposal's advantages.
LEMURS: Learning Distributed Multi-Robot Interactions
Sebastian, Eduardo, Duong, Thai, Atanasov, Nikolay, Montijano, Eduardo, Sagues, Carlos
This paper presents LEMURS, an algorithm for learning scalable multi-robot control policies from cooperative task demonstrations. We propose a port-Hamiltonian description of the multi-robot system to exploit universal physical constraints in interconnected systems and achieve closed-loop stability. We represent a multi-robot control policy using an architecture that combines self-attention mechanisms and neural ordinary differential equations. The former handles time-varying communication in the robot team, while the latter respects the continuous-time robot dynamics. Our representation is distributed by construction, enabling the learned control policies to be deployed in robot teams of different sizes. We demonstrate that LEMURS can learn interactions and cooperative behaviors from demonstrations of multi-agent navigation and flocking tasks.