Goto

Collaborating Authors

 Schneider, Nathan


Construction Identification and Disambiguation Using BERT: A Case Study of NPN

arXiv.org Artificial Intelligence

Construction Grammar hypothesizes that knowledge of a language consists chiefly of knowledge of form-meaning pairs (''constructions'') that include vocabulary, general grammar rules, and even idiosyncratic patterns. Recent work has shown that transformer language models represent at least some constructional patterns, including ones where the construction is rare overall. In this work, we probe BERT's representation of the form and meaning of a minor construction of English, the NPN (noun-preposition-noun) construction -- exhibited in such expressions as face to face and day to day -- which is known to be polysemous. We construct a benchmark dataset of semantically annotated corpus instances (including distractors that superficially resemble the construction). With this dataset, we train and evaluate probing classifiers. They achieve decent discrimination of the construction from distractors, as well as sense disambiguation among true instances of the construction, revealing that BERT embeddings carry indications of the construction's semantics. Moreover, artificially permuting the word order of true construction instances causes them to be rejected, indicating sensitivity to matters of form. We conclude that BERT does latently encode at least some knowledge of the NPN construction going beyond a surface syntactic pattern and lexical cues.


Natural Language Processing RELIES on Linguistics

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym $RELIES$ that encapsulates six major facets where linguistics contributes to NLP: $R$esources, $E$valuation, $L$ow-resource settings, $I$nterpretability, $E$xplanation, and the $S$tudy of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-a-vis systems of human language.


UCxn: Typologically Informed Annotation of Constructions Atop Universal Dependencies

arXiv.org Artificial Intelligence

The Universal Dependencies (UD) project has created an invaluable collection of treebanks with contributions in over 140 languages. However, the UD annotations do not tell the full story. Grammatical constructions that convey meaning through a particular combination of several morphosyntactic elements -- for example, interrogative sentences with special markers and/or word orders -- are not labeled holistically. We argue for (i) augmenting UD annotations with a 'UCxn' annotation layer for such meaning-bearing grammatical constructions, and (ii) approaching this in a typologically informed way so that morphosyntactic strategies can be compared across languages. As a case study, we consider five construction families in ten languages, identifying instances of each construction in UD treebanks through the use of morphosyntactic patterns. In addition to findings regarding these particular constructions, our study yields important insights on methodology for describing and identifying constructions in language-general and language-particular ways, and lays the foundation for future constructional enrichment of UD treebanks.


Cross-linguistically Consistent Semantic and Syntactic Annotation of Child-directed Speech

arXiv.org Artificial Intelligence

This paper proposes a methodology for constructing such corpora of child directed speech (CDS) paired with sentential logical forms, and uses this method to create two such corpora, in English and Hebrew. The approach enforces a cross-linguistically consistent representation, building on recent advances in dependency representation and semantic parsing. Specifically, the approach involves two steps. First, we annotate the corpora using the Universal Dependencies (UD) scheme for syntactic annotation, which has been developed to apply consistently to a wide variety of domains and typologically diverse languages. Next, we further annotate these data by applying an automatic method for transducing sentential logical forms (LFs) from UD structures. The UD and LF representations have complementary strengths: UD structures are language-neutral and support consistent and reliable annotation by multiple annotators, whereas LFs are neutral as to their syntactic derivation and transparently encode semantic relations. Using this approach, we provide syntactic and semantic annotation for two corpora from CHILDES: Brown's Adam corpus (English; we annotate ~80% of its child-directed utterances), all child-directed utterances from Berman's Hagar corpus (Hebrew). We verify the quality of the UD annotation using an inter-annotator agreement study, and manually evaluate the transduced meaning representations. We then demonstrate the utility of the compiled corpora through (1) a longitudinal corpus study of the prevalence of different syntactic and semantic phenomena in the CDS, and (2) applying an existing computational model of language acquisition to the two corpora and briefly comparing the results across languages.


Syntactic Inductive Bias in Transformer Language Models: Especially Helpful for Low-Resource Languages?

arXiv.org Artificial Intelligence

A line of work on Transformer-based language models such as BERT has attempted to use syntactic inductive bias to enhance the pretraining process, on the theory that building syntactic structure into the training process should reduce the amount of data needed for training. But such methods are often tested for high-resource languages such as English. In this work, we investigate whether these methods can compensate for data sparseness in low-resource languages, hypothesizing that they ought to be more effective for low-resource languages. We experiment with five low-resource languages: Uyghur, Wolof, Maltese, Coptic, and Ancient Greek. We find that these syntactic inductive bias methods produce uneven results in low-resource settings, and provide surprisingly little benefit in most cases.


AMR4NLI: Interpretable and robust NLI measures from semantic graphs

arXiv.org Artificial Intelligence

The task of natural language inference (NLI) asks whether a given premise (expressed in NL) entails a given NL hypothesis. NLI benchmarks contain human ratings of entailment, but the meaning relationships driving these ratings are not formalized. Can the underlying sentence pair relationships be made more explicit in an interpretable yet robust fashion? We compare semantic structures to represent premise and hypothesis, including sets of contextualized embeddings and semantic graphs (Abstract Meaning Representations), and measure whether the hypothesis is a semantic substructure of the premise, utilizing interpretable metrics. Our evaluation on three English benchmarks finds value in both contextualized embeddings and semantic graphs; moreover, they provide complementary signals, and can be leveraged together in a hybrid model.


ELQA: A Corpus of Metalinguistic Questions and Answers about English

arXiv.org Artificial Intelligence

We present ELQA, a corpus of questions and answers in and about the English language. Collected from two online forums, the >70k questions (from English learners and others) cover wide-ranging topics including grammar, meaning, fluency, and etymology. The answers include descriptions of general properties of English vocabulary and grammar as well as explanations about specific (correct and incorrect) usage examples. Unlike most NLP datasets, this corpus is metalinguistic -- it consists of language about language. As such, it can facilitate investigations of the metalinguistic capabilities of NLU models, as well as educational applications in the language learning domain. To study this, we define a free-form question answering task on our dataset and conduct evaluations on multiple LLMs (Large Language Models) to analyze their capacity to generate metalinguistic answers.


CGELBank Annotation Manual v1.0

arXiv.org Artificial Intelligence

CGELBank is a treebank and associated tools based on a syntactic formalism for English derived from the Cambridge Grammar of the English Language. This document lays out the particularities of the CGELBank annotation scheme.


CuRIAM: Corpus re Interpretation and Metalanguage in U.S. Supreme Court Opinions

arXiv.org Artificial Intelligence

Most judicial decisions involve the interpretation of legal texts; as such, judicial opinion requires the use of language as a medium to comment on or draw attention to other language. Language used this way is called metalanguage. We develop an annotation schema for categorizing types of legal metalanguage and apply our schema to a set of U.S. Supreme Court opinions, yielding a corpus totaling 59k tokens. We remark on several patterns observed in the kinds of metalanguage used by the justices.


Translationese Reduction using Abstract Meaning Representation

arXiv.org Artificial Intelligence

Translated texts or utterances bear several hallmarks distinct from texts originating in the language. This phenomenon, known as translationese, is well-documented, and when found in training or test sets can affect model performance. Still, work to mitigate the effect of translationese in human translated text is understudied. We hypothesize that Abstract Meaning Representation (AMR), a semantic representation which abstracts away from the surface form, can be used as an interlingua to reduce the amount of translationese in translated texts. By parsing English translations into an AMR graph and then generating text from that AMR, we obtain texts that more closely resemble non-translationese by macro-level measures. We show that across four metrics, and qualitatively, using AMR as an interlingua enables the reduction of translationese and we compare our results to two additional approaches: one based on round-trip machine translation and one based on syntactically controlled generation.