Schmidt, Victor
Improving Molecular Modeling with Geometric GNNs: an Empirical Study
Ramlaoui, Ali, Saulus, Théo, Terver, Basile, Schmidt, Victor, Rolnick, David, Malliaros, Fragkiskos D., Duval, Alexandre
Rapid advancements in machine learning (ML) are transforming materials science by significantly speeding up material property calculations. However, the proliferation of ML approaches has made it challenging for scientists to keep up with the most promising techniques. This paper presents an empirical study on Geometric Graph Neural Networks for 3D atomic systems, focusing on the impact of different (1) canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement. Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
Crystal-GFN: sampling crystals with desirable properties and constraints
AI4Science, Mila, Hernandez-Garcia, Alex, Duval, Alexandre, Volokhova, Alexandra, Bengio, Yoshua, Sharma, Divya, Carrier, Pierre Luc, Benabed, Yasmine, Koziarski, Michał, Schmidt, Victor
Accelerating material discovery holds the potential to greatly help mitigate the climate crisis. Discovering new solid-state materials such as electrocatalysts, super-ionic conductors or photovoltaic materials can have a crucial impact, for instance, in improving the efficiency of renewable energy production and storage. In this paper, we introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials, namely the space group, composition and lattice parameters. This domain-inspired approach enables the flexible incorporation of physical and structural hard constraints, as well as the use of any available predictive model of a desired physicochemical property as an objective function. To design stable materials, one must target the candidates with the lowest formation energy. Here, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench. The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems
Duval, Alexandre, Mathis, Simon V., Joshi, Chaitanya K., Schmidt, Victor, Miret, Santiago, Malliaros, Fragkiskos D., Cohen, Taco, Lio, Pietro, Bengio, Yoshua, Bronstein, Michael
Recent advances in computational modelling of atomic systems, spanning molecules, proteins, and materials, represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space. In these graphs, the geometric attributes transform according to the inherent physical symmetries of 3D atomic systems, including rotations and translations in Euclidean space, as well as node permutations. In recent years, Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation. Their specificity lies in the inductive biases they leverage -- such as physical symmetries and chemical properties -- to learn informative representations of these geometric graphs. In this opinionated paper, we provide a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems. We cover fundamental background material and introduce a pedagogical taxonomy of Geometric GNN architectures: (1) invariant networks, (2) equivariant networks in Cartesian basis, (3) equivariant networks in spherical basis, and (4) unconstrained networks. Additionally, we outline key datasets and application areas and suggest future research directions. The objective of this work is to present a structured perspective on the field, making it accessible to newcomers and aiding practitioners in gaining an intuition for its mathematical abstractions.
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Carbonero, Alvaro, Duval, Alexandre, Schmidt, Victor, Miret, Santiago, Hernandez-Garcia, Alex, Bengio, Yoshua, Rolnick, David
The use of machine learning for material property prediction and discovery has traditionally centered on graph neural networks that incorporate the geometric configuration of all atoms. However, in practice not all this information may be readily available, e.g. when evaluating the potentially unknown binding of adsorbates to catalyst. In this paper, we investigate whether it is possible to predict a system's relaxed energy in the OC20 dataset while ignoring the relative position of the adsorbate with respect to the electro-catalyst. We consider SchNet, DimeNet++ and FAENet as base architectures and measure the impact of four modifications on model performance: removing edges in the input graph, pooling independent representations, not sharing the backbone weights and using an attention mechanism to propagate non-geometric relative information. We find that while removing binding site information impairs accuracy as expected, modified models are able to predict relaxed energies with remarkably decent MAE. Our work suggests future research directions in accelerated materials discovery where information on reactant configurations can be reduced or altogether omitted.
torchgfn: A PyTorch GFlowNet library
Lahlou, Salem, Viviano, Joseph D., Schmidt, Victor, Bengio, Yoshua
The growing popularity of generative flow networks (GFlowNets or GFNs) from a range of researchers with diverse backgrounds and areas of expertise necessitates a library which facilitates the testing of new features such as training losses that can be easily compared to standard benchmark implementations, or on a set of common environments. torchgfn is a PyTorch library that aims to address this need. It provides users with a simple API for environments and useful abstractions for samplers and losses. Multiple examples are provided, replicating and unifying published results. The code is available in https://github.com/saleml/torchgfn.
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Duval, Alexandre, Schmidt, Victor, Miret, Santiago, Bengio, Yoshua, Hernández-García, Alex, Rolnick, David
Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electrochemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions and evaluate them thoroughly on multiple architectures. Overall, our proposed PhAST improvements increase energy MAE by 4 to 42$\%$ while dividing compute time by 3 to 8$\times$ depending on the targeted task/model. PhAST also enables CPU training, leading to 40$\times$ speedups in highly parallelized settings. Python package: \url{https://phast.readthedocs.io}.
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Duval, Alexandre, Schmidt, Victor, Garcia, Alex Hernandez, Miret, Santiago, Malliaros, Fragkiskos D., Bengio, Yoshua, Rolnick, David
Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https://faenet.readthedocs.io.
ClimateGAN: Raising Climate Change Awareness by Generating Images of Floods
Schmidt, Victor, Luccioni, Alexandra Sasha, Teng, Mélisande, Zhang, Tianyu, Reynaud, Alexia, Raghupathi, Sunand, Cosne, Gautier, Juraver, Adrien, Vardanyan, Vahe, Hernandez-Garcia, Alex, Bengio, Yoshua
Climate change is a major threat to humanity, and the actions required to prevent its catastrophic consequences include changes in both policy-making and individual behaviour. However, taking action requires understanding the effects of climate change, even though they may seem abstract and distant. Projecting the potential consequences of extreme climate events such as flooding in familiar places can help make the abstract impacts of climate change more concrete and encourage action. As part of a larger initiative to build a website that projects extreme climate events onto user-chosen photos, we present our solution to simulate photo-realistic floods on authentic images. To address this complex task in the absence of suitable training data, we propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation. In this paper, we describe the details of our framework, thoroughly evaluate components of our architecture and demonstrate that our model is capable of robustly generating photo-realistic flooding.
Predicting Infectiousness for Proactive Contact Tracing
Bengio, Yoshua, Gupta, Prateek, Maharaj, Tegan, Rahaman, Nasim, Weiss, Martin, Deleu, Tristan, Muller, Eilif, Qu, Meng, Schmidt, Victor, St-Charles, Pierre-Luc, Alsdurf, Hannah, Bilanuik, Olexa, Buckeridge, David, Caron, Gáetan Marceau, Carrier, Pierre-Luc, Ghosn, Joumana, Ortiz-Gagne, Satya, Pal, Chris, Rish, Irina, Schölkopf, Bernhard, Sharma, Abhinav, Tang, Jian, Williams, Andrew
The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdowns for emergency containment. Various DCT methods have been proposed, each making tradeoffs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individual's test results, with corresponding binary recommendations that either all or none of the individual's contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or preexisting medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individual's infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). Similarly to other works, we find that compared to no tracing, all DCT methods tested are able to reduce spread of the disease and thus save lives, even at low adoption rates, strongly supporting a role for DCT methods in managing the pandemic. Further, we find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe reopening and second-wave prevention. Until pharmaceutical interventions such as a vaccine become available, control of the COVID-19 pandemic relies on nonpharmaceutical interventions such as lockdown and social distancing. While these have often been successful in limiting spread of the disease in the short term, these restrictive measures have important negative social, mental health, and economic impacts. Digital contact tracing (DCT), a technique to track the spread of the virus among individuals in a population using smartphones, is an attractive potential solution to help reduce growth in the number of cases and thereby allow more economic and social activities to resume while keeping the number of cases low. All bolded terms are defined in the Glossary; Appendix 1.
Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks
Schmidt, Victor, Luccioni, Alexandra, Mukkavilli, S. Karthik, Balasooriya, Narmada, Sankaran, Kris, Chayes, Jennifer, Bengio, Yoshua
We present a project that aims to generate images that depict accurate, vivid, and personalized outcomes of climate change using Cycle-Consistent Adversarial Networks (CycleGANs). By training our CycleGAN model on street-view images of houses before and after extreme weather events (e.g. floods, forest fires, etc.), we learn a mapping that can then be applied to images of locations that have not yet experienced these events. This visual transformation is paired with climate model predictions to assess likelihood and type of climate-related events in the long term (50 years) in order to bring the future closer in the viewers mind. The eventual goal of our project is to enable individuals to make more informed choices about their climate future by creating a more visceral understanding of the effects of climate change, while maintaining scientific credibility by drawing on climate model projections.