Goto

Collaborating Authors

 Scherl, Isabel


Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printing

arXiv.org Artificial Intelligence

Hydrodynamic pattern formation phenomena in printing and coating processes are still not fully understood. However, fundamental understanding is essential to achieve high-quality printed products and to tune printed patterns according to the needs of a specific application like printed electronics, graphical printing, or biomedical printing. The aim of the paper is to develop an automated pattern classification algorithm based on methods from supervised machine learning and reduced-order modeling. We use the HYPA-p dataset, a large image dataset of gravure-printed images, which shows various types of hydrodynamic pattern formation phenomena. It enables the correlation of printing process parameters and resulting printed patterns for the first time. 26880 images of the HYPA-p dataset have been labeled by a human observer as dot patterns, mixed patterns, or finger patterns; 864000 images (97%) are unlabeled. A singular value decomposition (SVD) is used to find the modes of the labeled images and to reduce the dimensionality of the full dataset by truncation and projection. Selected machine learning classification techniques are trained on the reduced-order data. We investigate the effect of several factors, including classifier choice, whether or not fast Fourier transform (FFT) is used to preprocess the labeled images, data balancing, and data normalization. The best performing model is a k-nearest neighbor (kNN) classifier trained on unbalanced, FFT-transformed data with a test error of 3%, which outperforms a human observer by 7%. Data balancing slightly increases the test error of the kNN-model to 5%, but also increases the recall of the mixed class from 90% to 94%. Finally, we demonstrate how the trained models can be used to predict the pattern class of unlabeled images and how the predictions can be correlated to the printing process parameters, in the form of regime maps.


Bio-Inspired Compensatory Strategies for Damage to Flapping Robotic Propulsors

arXiv.org Artificial Intelligence

To maintain full autonomy, autonomous robotic systems must have the ability to self-repair. Self-repairing via compensatory mechanisms appears in nature: for example, some fish can lose even 76% of their propulsive surface without loss of thrust by altering stroke mechanics. However, direct transference of these alterations from an organism to a robotic flapping propulsor may not be optimal due to irrelevant evolutionary pressures. We instead seek to determine what alterations to stroke mechanics are optimal for a damaged robotic system via artificial evolution. To determine whether natural and machine-learned optima differ, we employ a cyber-physical system using a Covariance Matrix Adaptation Evolutionary Strategy to seek the most efficient trajectory for a given force. We implement an online optimization with hardware-in-the-loop, performing experimental function evaluations with an actuated flexible flat plate. To recoup thrust production following partial amputation, the most efficient learned strategy was to increase amplitude, increase frequency, increase the amplitude of angle of attack, and phase shift the angle of attack by approximately 110 degrees. In fish, only an amplitude increase is reported by majority in the literature. To recoup side-force production, a more challenging optimization landscape is encountered. Nesting of optimal angle of attack traces is found in the resultant-based reference frame, but no clear trend in amplitude or frequency are exhibited -- in contrast to the increase in frequency reported in insect literature. These results suggest that how mechanical flapping propulsors most efficiently adjust to damage of a flapping propulsor may not align with natural swimmers and flyers.