Schaub, Torsten


Efficiency Analysis of ASP Encodings for Sequential Pattern Mining Tasks

arXiv.org Machine Learning

This article presents the use of Answer Set Programming (ASP) to mine sequential patterns. ASP is a high-level declarative logic programming paradigm for high level encoding combinatorial and optimization problem solving as well as knowledge representation and reasoning. Thus, ASP is a good candidate for implementing pattern mining with background knowledge, which has been a data mining issue for a long time. We propose encodings of the classical sequential pattern mining tasks within two representations of embeddings (fill-gaps vs skip-gaps) and for various kinds of patterns: frequent, constrained and condensed. We compare the computational performance of these encodings with each other to get a good insight into the efficiency of ASP encodings. The results show that the fill-gaps strategy is better on real problems due to lower memory consumption. Finally, compared to a constraint programming approach (CPSM), another declarative programming paradigm, our proposal showed comparable performance.


Modeling and Language Extensions

AI Magazine

Answer set programming (ASP) has emerged as an approach to declarative problem solving based on the stable model semantics for logic programs. The basic idea is to represent a computational problem by a logic program, formulating constraints in terms of rules, such that its answer sets correspond to problem solutions. Compact problem representations take advantage of genuine modeling features of ASP, including (first-order) variables, negation by default, and recursion. In this article, we demonstrate the ASP methodology on two example scenarios, illustrating basic as well as advanced modeling and solving concepts.


Grounding and Solving in Answer Set Programming

AI Magazine

Answer set programming is a declarative problem solving paradigm that rests upon a workflow involving modeling, grounding, and solving. While the former is described by Gebser and Schaub (2016), we focus here on key issues in grounding, or how to systematically replace object variables by ground terms in a effective way, and solving, or how to compute the answer sets of a propositional logic program obtained by grounding.


Modeling and Language Extensions

AI Magazine

Answer set programming (ASP) has emerged as an approach to declarative problem solving based on the stable model semantics for logic programs. The basic idea is to represent a computational problem by a logic program, formulating constraints in terms of rules, such that its answer sets correspond to problem solutions. To this end, ASP combines an expressive language for high-level modeling with powerful low-level reasoning capacities, provided by off-the-shelf tools. Compact problem representations take advantage of genuine modeling features of ASP, including (first-order) variables, negation by default, and recursion. In this article, we demonstrate the ASP methodology on two example scenarios, illustrating basic as well as advanced modeling and solving concepts. We also discuss mechanisms to represent and implement extended kinds of preferences and optimization. An overview of further available extensions concludes the article.


Grounding and Solving in Answer Set Programming

AI Magazine

Answer set programming is a declarative problem solving paradigm that rests upon a workflow involving modeling, grounding, and solving. While the former is described by Gebser and Schaub (2016), we focus here on key issues in grounding, or how to systematically replace object variables by ground terms in a effective way, and solving, or how to compute the answer sets of a propositional logic program obtained by grounding.


Solving Goal Recognition Design Using ASP

AAAI Conferences

Goal Recognition Design involves identifying the best ways to modify an underlying environment that agents operate in, typically by making asubset of feasible actions infeasible, so that agents are forced to reveal their goals as early as possible. Thus far, existing work has focused exclusively on imperative classical planning. In this paper, we address the same problem with a different paradigm, namely, declarative approaches based on Answer Set Programming (ASP). Our experimental results show that one of our ASP encodings is more scalable and is significantly faster by up to three orders of magnitude than thecurrent state of the art.


asprin: Customizing Answer Set Preferences without a Headache

AAAI Conferences

In this paper we describe asprin, a general, flexible, and extensible framework for handling preferences among the stable models of a logic program. We show how complex preference relations can be specified through user-defined preference types and their arguments. We describe how preference specifications are handled internally by so-called preference programs, which are used for dominance testing. We also give algorithms for computing one, or all, optimal stable models of a logic program. Notably, our algorithms depend on the complexity of the dominance tests and make use of multi-shot answer set solving technology.


AutoFolio: Algorithm Configuration for Algorithm Selection

AAAI Conferences

Algorithm selection (AS) techniques — which involve choosing from a set of algorithms the one expected to solve a given problem instance most efficiently — have substantially improved the state-of-the-art in solving many prominent AI problems, such as SAT, CSP, ASP, MAXSAT, and QBF.Although several AS procedures have been introduced,not too surprisingly, none of them dominates all others across all AS scenarios.Furthermore, these procedures have parameters whose optimal values vary across AS scenarios.This holds specifically for the machine learning techniques that form the core of current AS proceduresand for their hyperparameters. Therefore, to successfully apply AS to new problems, algorithms and benchmark sets, two questions need to be answered:(i) how to select an AS approach and (ii) how to set its parameters effectively.We address both of these problems simultaneously by using automated algorithm configuration.Specifically, we demonstrate that we can use algorithm configurators to automatically configure clasp folio 2,which implements a large variety of different AS approaches and their respective parameters in a single highly parameterized algorithm framework.We demonstrate that this approach, dubbed auto folio, can significantly improve the performance of clasp folio 2 on 11 out of the 12 scenarios from the Algorithm Selection Library and leads to new state-of-the-art algorithm selectors for 8 of these scenarios.


Solver Scheduling via Answer Set Programming

arXiv.org Artificial Intelligence

Although Boolean Constraint Technology has made tremendous progress over the last decade, the efficacy of state-of-the-art solvers is known to vary considerably across different types of problem instances and is known to depend strongly on algorithm parameters. This problem was addressed by means of a simple, yet effective approach using handmade, uniform and unordered schedules of multiple solvers in ppfolio, which showed very impressive performance in the 2011 SAT Competition. Inspired by this, we take advantage of the modeling and solving capacities of Answer Set Programming (ASP) to automatically determine more refined, that is, non-uniform and ordered solver schedules from existing benchmarking data. We begin by formulating the determination of such schedules as multi-criteria optimization problems and provide corresponding ASP encodings. The resulting encodings are easily customizable for different settings and the computation of optimum schedules can mostly be done in the blink of an eye, even when dealing with large runtime data sets stemming from many solvers on hundreds to thousands of instances. Also, the fact that our approach can be customized easily enabled us to swiftly adapt it to generate parallel schedules for multi-processor machines.


Domain-Specific Heuristics in Answer Set Programming

AAAI Conferences

We introduce a general declarative framework for incorporating domain-specific heuristics into ASP solving. We accomplish this by extending the first-order modeling language of ASP by a distinguished heuristic predicate. The resulting heuristic information is processed as an equitable part of the logic program and subsequently exploited by the solver when it comes to non-deterministically assigning a truth value to an atom. We implemented our approach as a dedicated heuristic in the ASP solver clasp and show its great prospect by an empirical evaluation.