Schaefer, Simon
Online Tree Reconstruction and Forest Inventory on a Mobile Robotic System
Freißmuth, Leonard, Mattamala, Matias, Chebrolu, Nived, Schaefer, Simon, Leutenegger, Stefan, Fallon, Maurice
Terrestrial laser scanning (TLS) is the standard technique used to create accurate point clouds for digital forest inventories. However, the measurement process is demanding, requiring up to two days per hectare for data collection, significant data storage, as well as resource-heavy post-processing of 3D data. In this work, we present a real-time mapping and analysis system that enables online generation of forest inventories using mobile laser scanners that can be mounted e.g. on mobile robots. Given incrementally created and locally accurate submaps-data payloads-our approach extracts tree candidates using a custom, Voronoi-inspired clustering algorithm. Tree candidates are reconstructed using an adapted Hough algorithm, which enables robust modeling of the tree stem. Further, we explicitly incorporate the incremental nature of the data collection by consistently updating the database using a pose graph LiDAR SLAM system. This enables us to refine our estimates of the tree traits if an area is revisited later during a mission. We demonstrate competitive accuracy to TLS or manual measurements using laser scanners that we mounted on backpacks or mobile robots operating in conifer, broad-leaf and mixed forests. Our results achieve RMSE of 1.93 cm, a bias of 0.65 cm and a standard deviation of 1.81 cm (averaged across these sequences)-with no post-processing required after the mission is complete.
Scalable Autonomous Drone Flight in the Forest with Visual-Inertial SLAM and Dense Submaps Built without LiDAR
Laina, Sebastián Barbas, Boche, Simon, Papatheodorou, Sotiris, Tzoumanikas, Dimos, Schaefer, Simon, Chen, Hanzhi, Leutenegger, Stefan
Forestry constitutes a key element for a sustainable future, while it is supremely challenging to introduce digital processes to improve efficiency. The main limitation is the difficulty of obtaining accurate maps at high temporal and spatial resolution as a basis for informed forestry decision-making, due to the vast area forests extend over and the sheer number of trees. To address this challenge, we present an autonomous Micro Aerial Vehicle (MAV) system which purely relies on cost-effective and light-weight passive visual and inertial sensors to perform under-canopy autonomous navigation. We leverage visual-inertial simultaneous localization and mapping (VI-SLAM) for accurate MAV state estimates and couple it with a volumetric occupancy submapping system to achieve a scalable mapping framework which can be directly used for path planning. As opposed to a monolithic map, submaps inherently deal with inevitable drift and corrections from VI-SLAM, since they move with pose estimates as they are updated. To ensure the safety of the MAV during navigation, we also propose a novel reference trajectory anchoring scheme that moves and deforms the reference trajectory the MAV is tracking upon state updates from the VI-SLAM system in a consistent way, even upon large changes in state estimates due to loop-closures. We thoroughly validate our system in both real and simulated forest environments with high tree densities in excess of 400 trees per hectare and at speeds up to 3 m/s - while not encountering a single collision or system failure. To the best of our knowledge this is the first system which achieves this level of performance in such unstructured environment using low-cost passive visual sensors and fully on-board computation including VI-SLAM.
GloPro: Globally-Consistent Uncertainty-Aware 3D Human Pose Estimation & Tracking in the Wild
Schaefer, Simon, Henning, Dorian F., Leutenegger, Stefan
An accurate and uncertainty-aware 3D human body pose estimation is key to enabling truly safe but efficient human-robot interactions. Current uncertainty-aware methods in 3D human pose estimation are limited to predicting the uncertainty of the body posture, while effectively neglecting the body shape and root pose. In this work, we present GloPro, which to the best of our knowledge the first framework to predict an uncertainty distribution of a 3D body mesh including its shape, pose, and root pose, by efficiently fusing visual clues with a learned motion model. We demonstrate that it vastly outperforms state-of-the-art methods in terms of human trajectory accuracy in a world coordinate system (even in the presence of severe occlusions), yields consistent uncertainty distributions, and can run in real-time.
BodySLAM++: Fast and Tightly-Coupled Visual-Inertial Camera and Human Motion Tracking
Henning, Dorian F., Choi, Christopher, Schaefer, Simon, Leutenegger, Stefan
Robust, fast, and accurate human state - 6D pose and posture - estimation remains a challenging problem. For real-world applications, the ability to estimate the human state in real-time is highly desirable. In this paper, we present BodySLAM++, a fast, efficient, and accurate human and camera state estimation framework relying on visual-inertial data. BodySLAM++ extends an existing visual-inertial state estimation framework, OKVIS2, to solve the dual task of estimating camera and human states simultaneously. Our system improves the accuracy of both human and camera state estimation with respect to baseline methods by 26% and 12%, respectively, and achieves real-time performance at 15+ frames per second on an Intel i7-model CPU. Experiments were conducted on a custom dataset containing both ground truth human and camera poses collected with an indoor motion tracking system.
Int-HRL: Towards Intention-based Hierarchical Reinforcement Learning
Penzkofer, Anna, Schaefer, Simon, Strohm, Florian, Bâce, Mihai, Leutenegger, Stefan, Bulling, Andreas
While deep reinforcement learning (RL) agents outperform humans on an increasing number of tasks, training them requires data equivalent to decades of human gameplay. Recent hierarchical RL methods have increased sample efficiency by incorporating information inherent to the structure of the decision problem but at the cost of having to discover or use human-annotated sub-goals that guide the learning process. We show that intentions of human players, i.e. the precursor of goal-oriented decisions, can be robustly predicted from eye gaze even for the long-horizon sparse rewards task of Montezuma's Revenge - one of the most challenging RL tasks in the Atari2600 game suite. We propose Int-HRL: Hierarchical RL with intention-based sub-goals that are inferred from human eye gaze. Our novel sub-goal extraction pipeline is fully automatic and replaces the need for manual sub-goal annotation by human experts. Our evaluations show that replacing hand-crafted sub-goals with automatically extracted intentions leads to a HRL agent that is significantly more sample efficient than previous methods.
Leveraging Neural Network Gradients within Trajectory Optimization for Proactive Human-Robot Interactions
Schaefer, Simon, Leung, Karen, Ivanovic, Boris, Pavone, Marco
To achieve seamless human-robot interactions, robots need to intimately reason about complex interaction dynamics and future human behaviors within their motion planning process. However, there is a disconnect between state-of-the-art neural network-based human behavior models and robot motion planners -- either the behavior models are limited in their consideration of downstream planning or a simplified behavior model is used to ensure tractability of the planning problem. In this work, we present a framework that fuses together the interpretability and flexibility of trajectory optimization (TO) with the predictive power of state-of-the-art human trajectory prediction models. In particular, we leverage gradient information from data-driven prediction models to explicitly reason about human-robot interaction dynamics within a gradient-based TO problem. We demonstrate the efficacy of our approach in a multi-agent scenario whereby a robot is required to safely and efficiently navigate through a crowd of up to ten pedestrians. We compare against a variety of planning methods, and show that by explicitly accounting for interaction dynamics within the planner, our method offers safer and more efficient behaviors, even yielding proactive and nuanced behaviors such as waiting for a pedestrian to pass before moving.