Goto

Collaborating Authors

 Saukh, Olga


Forget the Data and Fine-Tuning! Just Fold the Network to Compress

arXiv.org Artificial Intelligence

We introduce model folding, a novel data-free model compression technique that merges structurally similar neurons across layers, significantly reducing the model size without the need for fine-tuning or access to training data. Unlike existing methods, model folding preserves data statistics during compression by leveraging k-means clustering, and using novel data-free techniques to prevent variance collapse or explosion. Our theoretical framework and experiments across standard benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding achieves comparable performance to data-driven compression techniques and outperforms recently proposed data-free methods, especially at high sparsity levels. This approach is particularly effective for compressing large-scale models, making it suitable for deployment in resource-constrained environments.


FocusDD: Real-World Scene Infusion for Robust Dataset Distillation

arXiv.org Artificial Intelligence

Dataset distillation has emerged as a strategy to compress real-world datasets for efficient training. However, it struggles with large-scale and high-resolution datasets, limiting its practicality. This paper introduces a novel resolution-independent dataset distillation method Focus ed Dataset Distillation (FocusDD), which achieves diversity and realism in distilled data by identifying key information patches, thereby ensuring the generalization capability of the distilled dataset across different network architectures. Specifically, FocusDD leverages a pre-trained Vision Transformer (ViT) to extract key image patches, which are then synthesized into a single distilled image. These distilled images, which capture multiple targets, are suitable not only for classification tasks but also for dense tasks such as object detection. To further improve the generalization of the distilled dataset, each synthesized image is augmented with a downsampled view of the original image. Experimental results on the ImageNet-1K dataset demonstrate that, with 100 images per class (IPC), ResNet50 and MobileNet-v2 achieve validation accuracies of 71.0% and 62.6%, respectively, outperforming state-of-the-art methods by 2.8% and 4.7%. Notably, FocusDD is the first method to use distilled datasets for object detection tasks. On the COCO2017 dataset, with an IPC of 50, YOLOv11n and YOLOv11s achieve 24.4% and 32.1% mAP, respectively, further validating the effectiveness of our approach.


Breaking the Illusion: Real-world Challenges for Adversarial Patches in Object Detection

arXiv.org Artificial Intelligence

Adversarial attacks pose a significant threat to the robustness and reliability of machine learning systems, particularly in computer vision applications. This study investigates the performance of adversarial patches for the YOLO object detection network in the physical world. Two attacks were tested: a patch designed to be placed anywhere within the scene - global patch, and another patch intended to partially overlap with specific object targeted for removal from detection - local patch. Various factors such as patch size, position, rotation, brightness, and hue were analyzed to understand their impact on the effectiveness of the adversarial patches. The results reveal a notable dependency on these parameters, highlighting the challenges in maintaining attack efficacy in real-world conditions. Learning to align digitally applied transformation parameters with those measured in the real world still results in up to a 64\% discrepancy in patch performance. These findings underscore the importance of understanding environmental influences on adversarial attacks, which can inform the development of more robust defenses for practical machine learning applications.


REDS: Resource-Efficient Deep Subnetworks for Dynamic Resource Constraints

arXiv.org Artificial Intelligence

Deep models deployed on edge devices frequently encounter resource variability, which arises from fluctuating energy levels, timing constraints, or prioritization of other critical tasks within the system. State-of-the-art machine learning pipelines generate resource-agnostic models, not capable to adapt at runtime. In this work we introduce Resource-Efficient Deep Subnetworks (REDS) to tackle model adaptation to variable resources. In contrast to the state-of-the-art, REDS use structured sparsity constructively by exploiting permutation invariance of neurons, which allows for hardware-specific optimizations. Specifically, REDS achieve computational efficiency by (1) skipping sequential computational blocks identified by a novel iterative knapsack optimizer, and (2) leveraging simple math to re-arrange the order of operations in REDS computational graph to take advantage of the data cache. REDS support conventional deep networks frequently deployed on the edge and provide computational benefits even for small and simple networks. We evaluate REDS on six benchmark architectures trained on the Google Speech Commands, FMNIST and CIFAR10 datasets, and test on four off-the-shelf mobile and embedded hardware platforms. We provide a theoretical result and empirical evidence for REDS outstanding performance in terms of submodels' test set accuracy, and demonstrate an adaptation time in response to dynamic resource constraints of under 40$\mu$s, utilizing a 2-layer fully-connected network on Arduino Nano 33 BLE Sense.


Subspace-Configurable Networks

arXiv.org Artificial Intelligence

While the deployment of deep learning models on edge devices is increasing, these models often lack robustness when faced with dynamic changes in sensed data. This can be attributed to sensor drift, or variations in the data compared to what was used during offline training due to factors such as specific sensor placement or naturally changing sensing conditions. Hence, achieving the desired robustness necessitates the utilization of either an invariant architecture or specialized training approaches, like data augmentation. Alternatively, input transformations can be treated as a domain shift problem, and solved by post-deployment model adaptation. In this paper, we train a parameterized subspace of configurable networks, where an optimal network for a particular parameter setting is part of this subspace. The obtained subspace is low-dimensional and has a surprisingly simple structure even for complex, non-invertible transformations of the input, leading to an exceptionally high efficiency of subspace-configurable networks (SCNs) when limited storage and computing resources are at stake. We evaluate SCNs on a wide range of standard datasets, architectures, and transformations, and demonstrate their power on resource-constrained IoT devices, where they can take up to 2.4 times less RAM and be 7.6 times faster at inference time than a model that achieves the same test set accuracy, yet is trained with data augmentations to cover the desired range of input transformations.


Geometric Data Augmentations to Mitigate Distribution Shifts in Pollen Classification from Microscopic Images

arXiv.org Artificial Intelligence

Distribution shifts are characterized by differences between the training and test data distributions. They can significantly reduce the accuracy of machine learning models deployed in real-world scenarios. This paper explores the distribution shift problem when classifying pollen grains from microscopic images collected in the wild with a low-cost camera sensor. We leverage the domain knowledge that geometric features are highly important for accurate pollen identification and introduce two novel geometric image augmentation techniques to significantly narrow the accuracy gap between the model performance on the train and test datasets. In particular, we show that Tenengrad and ImageToSketch filters are highly effective to balance the shape and texture information while leaving out unimportant details that may confuse the model. Extensive evaluations on various model architectures demonstrate a consistent improvement of the model generalization to field data of up to 14% achieved by the geometric augmentation techniques when compared to a wide range of standard image augmentations. The approach is validated through an ablation study using pollen hydration tests to recover the shape of dry pollen grains. The proposed geometric augmentations also receive the highest scores according to the affinity and diversity measures from the literature.


DataComp: In search of the next generation of multimodal datasets

arXiv.org Artificial Intelligence

Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing the resulting model on 38 downstream test sets. Our benchmark consists of multiple compute scales spanning four orders of magnitude, which enables the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow leads to better training sets. In particular, our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet, outperforming OpenAI's CLIP ViT-L/14 by 3.7 percentage points while using the same training procedure and compute. We release DataComp and all accompanying code at www.datacomp.ai.


REPAIR: REnormalizing Permuted Activations for Interpolation Repair

arXiv.org Machine Learning

In this paper we look into the conjecture of Entezari et al. (2021) which states that if the permutation invariance of neural networks is taken into account, then there is likely no loss barrier to the linear interpolation between SGD solutions. First, we observe that neuron alignment methods alone are insufficient to establish low-barrier linear connectivity between SGD solutions due to a phenomenon we call variance collapse: interpolated deep networks suffer a collapse in the variance of their activations, causing poor performance. Next, we propose REPAIR (REnormalizing Permuted Activations for Interpolation Repair) which mitigates variance collapse by rescaling the preactivations of such interpolated networks. We explore the interaction between our method and the choice of normalization layer, network width, and depth, and demonstrate that using REPAIR on top of neuron alignment methods leads to 60%-100% relative barrier reduction across a wide variety of architecture families and tasks. In particular, we report a 74% barrier reduction for ResNet50 on ImageNet and 90% barrier reduction for ResNet18 on CIFAR10.


The Role of Pre-training Data in Transfer Learning

arXiv.org Artificial Intelligence

The transfer learning paradigm of model pre-training and subsequent fine-tuning produces high-accuracy models. While most studies recommend scaling the pre-training size to benefit most from transfer learning, a question remains: what data and method should be used for pre-training? We investigate the impact of pre-training data distribution on the few-shot and full fine-tuning performance using 3 pre-training methods (supervised, contrastive language-image and image-image), 7 pre-training datasets, and 9 downstream datasets. Through extensive controlled experiments, we find that the choice of the pre-training data source is essential for the few-shot transfer, but its role decreases as more data is made available for fine-tuning. Additionally, we explore the role of data curation and examine the trade-offs between label noise and the size of the pre-training dataset. We find that using 2000X more pre-training data from LAION can match the performance of supervised ImageNet pre-training. Furthermore, we investigate the effect of pre-training methods, comparing language-image contrastive vs. image-image contrastive, and find that the latter leads to better downstream accuracy


Sensing the Air We Breathe — The OpenSense Zurich Dataset

AAAI Conferences

Monitoring and managing urban air pollution is a significant challenge for the sustainability of our environment. We quickly survey the air pollution modeling problem, introduce a new dataset of mobile air quality measurements in Zurich, and discuss the challenges of making sense of these data.