Goto

Collaborating Authors

 Sarfraz, M. Saquib


Optimizing Small Language Models for In-Vehicle Function-Calling

arXiv.org Artificial Intelligence

We propose a holistic approach for deploying Small Language Models (SLMs) as function-calling agents within vehicles as edge devices, offering a more flexible and robust alternative to traditional rule-based systems. By leveraging SLMs, we simplify vehicle control mechanisms and enhance the user experience. Given the in-vehicle hardware constraints, we apply state-of-the-art model compression techniques, including structured pruning, healing, and quantization, ensuring that the model fits within the resource limitations while maintaining acceptable performance. Our work focuses on optimizing a representative SLM, Microsoft's Phi-3 mini, and outlines best practices for enabling embedded models, including compression, task-specific fine-tuning, and vehicle integration. We demonstrate that, despite significant reduction in model size which removes up to 2 billion parameters from the original model, our approach preserves the model's ability to handle complex in-vehicle tasks accurately and efficiently. Furthermore, by executing the model in a lightweight runtime environment, we achieve a generation speed of 11 tokens per second, making real-time, on-device inference feasible without hardware acceleration. Our results demonstrate the potential of SLMs to transform vehicle control systems, enabling more intuitive interactions between users and their vehicles for an enhanced driving experience.


Advancing Open-Set Domain Generalization Using Evidential Bi-Level Hardest Domain Scheduler

arXiv.org Artificial Intelligence

In Open-Set Domain Generalization (OSDG), the model is exposed to both new variations of data appearance (domains) and open-set conditions, where both known and novel categories are present at test time. The challenges of this task arise from the dual need to generalize across diverse domains and accurately quantify category novelty, which is critical for applications in dynamic environments. Recently, meta-learning techniques have demonstrated superior results in OSDG, effectively orchestrating the meta-train and -test tasks by employing varied random categories and predefined domain partition strategies. These approaches prioritize a well-designed training schedule over traditional methods that focus primarily on data augmentation and the enhancement of discriminative feature learning. The prevailing meta-learning models in OSDG typically utilize a predefined sequential domain scheduler to structure data partitions. However, a crucial aspect that remains inadequately explored is the influence brought by strategies of domain schedulers during training. In this paper, we observe that an adaptive domain scheduler benefits more in OSDG compared with prefixed sequential and random domain schedulers. We propose the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS) to achieve an adaptive domain scheduler. This method strategically sequences domains by assessing their reliabilities in utilizing a follower network, trained with confidence scores learned in an evidential manner, regularized by max rebiasing discrepancy, and optimized in a bi-level manner. The results show that our method substantially improves OSDG performance and achieves more discriminative embeddings for both the seen and unseen categories. The source code is publicly available at https://github.com/KPeng9510/EBiL-HaDS.


Referring Atomic Video Action Recognition

arXiv.org Artificial Intelligence

We introduce a new task called Referring Atomic Video Action Recognition (RAVAR), aimed at identifying atomic actions of a particular person based on a textual description and the video data of this person. This task differs from traditional action recognition and localization, where predictions are delivered for all present individuals. In contrast, we focus on recognizing the correct atomic action of a specific individual, guided by text. To explore this task, we present the RefAVA dataset, containing 36,630 instances with manually annotated textual descriptions of the individuals. To establish a strong initial benchmark, we implement and validate baselines from various domains, e.g., atomic action localization, video question answering, and text-video retrieval. Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person. The key ingredients are: (1) a multi-stream architecture that connects video, text, and a new location-semantic stream, and (2) cross-stream agent attention fusion and agent token fusion which amplify the most relevant information across these streams and consistently surpasses standard attention-based fusion on RAVAR. Extensive experiments demonstrate the effectiveness of RefAtomNet and its building blocks for recognizing the action of the described individual. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR.


Position: Quo Vadis, Unsupervised Time Series Anomaly Detection?

arXiv.org Artificial Intelligence

The current state of machine learning scholarship in Timeseries Anomaly Detection (TAD) is plagued by the persistent use of flawed evaluation metrics, inconsistent benchmarking practices, and a lack of proper justification for the choices made in novel deep learning-based model designs. Our paper presents a critical analysis of the status quo in TAD, revealing the misleading track of current research and highlighting problematic methods, and evaluation practices. Our position advocates for a shift in focus from solely pursuing novel model designs to improving benchmarking practices, creating non-trivial datasets, and critically evaluating the utility of complex methods against simpler baselines. Our findings demonstrate the need for rigorous evaluation protocols, the creation of simple baselines, and the revelation that state-of-the-art deep anomaly detection models effectively learn linear mappings. These findings suggest the need for more exploration and development of simple and interpretable TAD methods. The increment of model complexity in the state-of-the-art deep-learning based models unfortunately offers very little improvement. We offer insights and suggestions for the field to move forward. Code: https://github.com/ssarfraz/QuoVadisTAD


Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation

arXiv.org Artificial Intelligence

Integrating information from multiple modalities enhances the robustness of scene perception systems in autonomous vehicles, providing a more comprehensive and reliable sensory framework. However, the modality incompleteness in multi-modal segmentation remains under-explored. In this work, we establish a task called Modality-Incomplete Scene Segmentation (MISS), which encompasses both system-level modality absence and sensor-level modality errors. To avoid the predominant modality reliance in multi-modal fusion, we introduce a Missing-aware Modal Switch (MMS) strategy to proactively manage missing modalities during training. Utilizing bit-level batch-wise sampling enhances the model's performance in both complete and incomplete testing scenarios. Furthermore, we introduce the Fourier Prompt Tuning (FPT) method to incorporate representative spectral information into a limited number of learnable prompts that maintain robustness against all MISS scenarios. Akin to fine-tuning effects but with fewer tunable parameters (1.1%). Extensive experiments prove the efficacy of our proposed approach, showcasing an improvement of 5.84% mIoU over the prior state-of-the-art parameter-efficient methods in modality missing. The source code will be publicly available at https://github.com/RuipingL/MISS.


MuscleMap: Towards Video-based Activated Muscle Group Estimation in the Wild

arXiv.org Artificial Intelligence

In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity in the wild. To this intent, we provide the MuscleMap dataset featuring >15K video clips with 135 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine under flexible environment constraints. The proposed MuscleMap dataset is constructed with YouTube videos, specifically targeting High-Intensity Interval Training (HIIT) physical exercise in the wild. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to numerous types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that the generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a multi-modality feature fusion mechanism between both the video transformer model and the skeleton-based graph convolution model with novel cross-modal knowledge distillation executed on multi-classification tokens. The proposed method surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The contributed dataset and code are made publicly available at https://github.com/KPeng9510/MuscleMap.


Navigating Open Set Scenarios for Skeleton-based Action Recognition

arXiv.org Artificial Intelligence

In real-world scenarios, human actions often fall outside the distribution of training data, making it crucial for models to recognize known actions and reject unknown ones. However, using pure skeleton data in such open-set conditions poses challenges due to the lack of visual background cues and the distinct sparse structure of body pose sequences. In this paper, we tackle the unexplored Open-Set Skeleton-based Action Recognition (OS-SAR) task and formalize the benchmark on three skeleton-based datasets. We assess the performance of seven established open-set approaches on our task and identify their limits and critical generalization issues when dealing with skeleton information. To address these challenges, we propose a distance-based cross-modality ensemble method that leverages the cross-modal alignment of skeleton joints, bones, and velocities to achieve superior open-set recognition performance. We refer to the key idea as CrossMax - an approach that utilizes a novel cross-modality mean max discrepancy suppression mechanism to align latent spaces during training and a cross-modality distance-based logits refinement method during testing. CrossMax outperforms existing approaches and consistently yields state-of-the-art results across all datasets and backbones. The benchmark, code, and models will be released at https://github.com/KPeng9510/OS-SAR.


RelaMiX: Exploring Few-Shot Adaptation in Video-based Action Recognition

arXiv.org Artificial Intelligence

Domain adaptation is essential for activity recognition to ensure accurate and robust performance across diverse environments, sensor types, and data sources. Unsupervised domain adaptation methods have been extensively studied, yet, they require large-scale unlabeled data from the target domain. In this work, we address Few-Shot Domain Adaptation for video-based Activity Recognition (FSDA-AR), which leverages a very small amount of labeled target videos to achieve effective adaptation. This setting is attractive and promising for applications, as it requires recording and labeling only a few, or even a single example per class in the target domain, which often includes activities that are rare yet crucial to recognize. We construct FSDA-AR benchmarks using five established datasets considering diverse domain types: UCF101, HMDB51, EPIC-KITCHEN, Sims4Action, and ToyotaSmartHome. Our results demonstrate that FSDA-AR performs comparably to unsupervised domain adaptation with significantly fewer (yet labeled) target domain samples. We further propose a novel approach, RelaMiX, to better leverage the few labeled target domain samples as knowledge guidance. RelaMiX encompasses a temporal relational attention network with relation dropout, alongside a cross-domain information alignment mechanism. Furthermore, it integrates a mechanism for mixing features within a latent space by using the few-shot target domain samples. The proposed RelaMiX solution achieves state-of-the-art performance on all datasets within the FSDA-AR benchmark. To encourage future research of few-shot domain adaptation for video-based activity recognition, our benchmarks and source code are made publicly available at https://github.com/KPeng9510/RelaMiX.


Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation

arXiv.org Artificial Intelligence

Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks, supervised approaches have achieved encouraging performance but require a high volume of detailed frame-level annotations. We present a fully automatic and unsupervised approach for segmenting actions in a video that does not require any training. Our proposal is an effective temporally-weighted hierarchical clustering algorithm that can group semantically consistent frames of the video. Our main finding is that representing a video with a 1-nearest neighbor graph by taking into account the time progression is sufficient to form semantically and temporally consistent clusters of frames where each cluster may represent some action in the video. Additionally, we establish strong unsupervised baselines for action segmentation and show significant performance improvements over published unsupervised methods on five challenging action segmentation datasets. Our approach also outperforms weakly-supervised methods by large margins on 4 of these datasets. Interestingly, we also achieve better results than many fully-supervised methods that have reported results on these datasets. Our code is available at https://github.com/ssarfraz/FINCH-Clustering/tree/master/TW-FINCH