Goto

Collaborating Authors

 Sala, Frederic


TARDIS: Mitigate Temporal Misalignment via Representation Steering

arXiv.org Artificial Intelligence

Language models often struggle with temporal misalignment, performance degradation caused by shifts in the temporal distribution of data. Continuously updating models to avoid degradation is expensive. Can models be adapted without updating model weights? We present TARDIS, an unsupervised representation editing method that addresses this challenge. TARDIS extracts steering vectors from unlabeled data and adjusts the model's representations to better align with the target time period's distribution. Our experiments reveal that TARDIS enhances downstream task performance without the need for fine-tuning, can mitigate temporal misalignment even when exact target time period data is unavailable, and remains efficient even when the temporal information of the target data points is unknown at inference time.


Personalize Your LLM: Fake it then Align it

arXiv.org Artificial Intelligence

Personalizing large language models (LLMs) is essential for delivering tailored interactions that improve user experience. Many existing personalization methods require fine-tuning LLMs for each user, rendering them prohibitively expensive for widespread adoption. Although retrieval-based approaches offer a more compute-efficient alternative, they still depend on large, high-quality datasets that are not consistently available for all users. To address this challenge, we propose CHAMELEON, a scalable and efficient personalization approach that uses (1) self-generated personal preference data and (2) representation editing to enable quick and cost-effective personalization. Our experiments on various tasks, including those from the LaMP personalization benchmark, show that CHAMELEON efficiently adapts models to personal preferences, improving instruction-tuned models and outperforms two personalization baselines by an average of 40% across two model architectures.


Tabby: Tabular Data Synthesis with Language Models

arXiv.org Artificial Intelligence

While advances in large language models (LLMs) have greatly improved the quality of synthetic text data in recent years, synthesizing tabular data has received relatively less attention. We address this disparity with Tabby, a simple but powerful post-training modification to the standard Transformer language model architecture, enabling its use for tabular dataset synthesis. Tabby enables the representation of differences across columns using Gated Mixture-of-Experts, with column-specific sets of parameters. Empirically, Tabby results in data quality near or equal to that of real data. By pairing our novel LLM table training technique, Plain, with Tabby, we observe up to a 44% improvement in quality over previous methods. We also show that Tabby extends beyond tables to more general structured data, reaching parity with real data on a nested JSON dataset as well.


Theoretical Physics Benchmark (TPBench) -- a Dataset and Study of AI Reasoning Capabilities in Theoretical Physics

arXiv.org Artificial Intelligence

We introduce a benchmark to evaluate the capability of AI to solve problems in theoretical physics, focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57 problems of varying difficulty, from undergraduate to research level. These problems are novel in the sense that they do not come from public problem collections. We evaluate our data set on various open and closed language models, including o3-mini, o1, DeepSeek-R1, GPT-4o and versions of Llama and Qwen. While we find impressive progress in model performance with the most recent models, our research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and grading, and discuss common failure modes. While currently state-of-the art models are still of limited use for researchers, our results show that AI assisted theoretical physics research may become possible in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome them. The public problems and solutions, results for various models, and updates to the data set and score distribution, are available on the website of the dataset tpbench.org.


ScriptoriumWS: A Code Generation Assistant for Weak Supervision

arXiv.org Artificial Intelligence

Weak supervision is a popular framework for overcoming the labeled data bottleneck: the need to obtain labels for training data. In weak supervision, multiple noisy-but-cheap sources are used to provide guesses of the label and are aggregated to produce high-quality pseudolabels. These sources are often expressed as small programs written by domain experts -- and so are expensive to obtain. Instead, we argue for using code-generation models to act as coding assistants for crafting weak supervision sources. We study prompting strategies to maximize the quality of the generated sources, settling on a multi-tier strategy that incorporates multiple types of information. We explore how to best combine hand-written and generated sources. Using these insights, we introduce ScriptoriumWS, a weak supervision system that, when compared to hand-crafted sources, maintains accuracy and greatly improves coverage.


Stronger Than You Think: Benchmarking Weak Supervision on Realistic Tasks

arXiv.org Artificial Intelligence

Weak supervision (WS) is a popular approach for label-efficient learning, leveraging diverse sources of noisy but inexpensive weak labels to automatically annotate training data. Despite its wide usage, WS and its practical value are challenging to benchmark due to the many knobs in its setup, including: data sources, labeling functions (LFs), aggregation techniques (called label models), and end model pipelines. Existing evaluation suites tend to be limited, focusing on particular components or specialized use cases. Moreover, they often involve simplistic benchmark tasks or de-facto LF sets that are suboptimally written, producing insights that may not generalize to real-world settings. We address these limitations by introducing a new benchmark, BOXWRENCH, designed to more accurately reflect real-world usages of WS. This benchmark features tasks with (1) higher class cardinality and imbalance, (2) notable domain expertise requirements, and (3) multilingual variations across parallel corpora. For all tasks, LFs are written using a careful procedure aimed at mimicking real-world settings. In contrast to existing WS benchmarks, we show that supervised learning requires substantial amounts (1000+) of labeled examples to match WS in many settings.


Evaluating Sample Utility for Data Selection by Mimicking Model Weights

arXiv.org Artificial Intelligence

Foundation models rely on large-scale web-crawled datasets, which frequently contain noisy data, biases, and irrelevant content. Existing data selection techniques typically use human heuristics, downstream evaluation datasets, or specialized scoring models, and can overlook samples' utility in the training process. Instead, we propose a new approach, Mimic Score, a data quality metric that uses a pretrained reference model as a guide to assess the usefulness of data samples for training a new model. It relies on the alignment between the gradient of the new model parameters and the vector pointing toward the reference model in weight space. Samples that misalign with this direction are considered low-value and can be filtered out. Motivated by the Mimic score, we develop Grad-Mimic, a data selection framework that identifies and prioritizes useful samples, automating the selection process to create effective filters. Empirically, using Mimic scores to guide model training results in consistent performance gains across six image datasets and enhances the performance of CLIP models. Moreover, Mimic scores and their associated filters improve upon existing filtering methods and offer accurate estimation of dataset quality.


Weak-to-Strong Generalization Through the Data-Centric Lens

arXiv.org Machine Learning

The weak-to-strong generalization phenomenon is the driver for important machine learning applications including highly data-efficient learning and, most recently, performing superalignment. While decades of research have resulted in numerous algorithms that produce strong empirical performance, understanding what aspects of data enable weak-to-strong generalization has been understudied. We propose a simple data-centric mechanism that characterizes weak-to-strong generalization: the overlap density. Intuitively, generalization tracks the number of points that contain overlaps, i.e., both easy patterns (learnable by a weak model) and challenging patterns (only learnable by a stronger model), as with such points, weak predictions can be used to learn challenging patterns by stronger models. We provide a practical overlap detection algorithm to find such points in datasets and leverage them to learn, among multiple sources of data, which to query when seeking to maximize overlap density and thereby enhance weak-to-strong generalization. We present a theoretical result showing that the generalization benefit is a function of the overlap density and a regret bound for our data selection algorithm. Empirically, we validate the mechanism and the overlap detection algorithm on a wide array of settings.


Evaluating Language Model Context Windows: A "Working Memory" Test and Inference-time Correction

arXiv.org Artificial Intelligence

Large language models are prominently used in real-world applications, often tasked with reasoning over large volumes of documents. An exciting development in this space is models boasting extended context capabilities, with some accommodating over 2 million tokens. Such long context model capabilities remain uncertain in production systems, motivating the need to benchmark their performance on real world use cases. We address this challenge by proposing SWiM, an evaluation framework that addresses the limitations of standard tests. Testing the framework on eight long context models, we find that even strong models such as GPT-4 and Claude 3 Opus degrade in performance when information is present in the middle of the context window (lost-in-the-middle effect). Next, in addition to our benchmark, we propose medoid voting, a simple, but effective training-free approach that helps alleviate this effect, by generating responses a few times, each time randomly permuting documents in the context, and selecting the medoid answer. We evaluate medoid voting on single document QA tasks, achieving up to a 24% lift in accuracy. Our code is available at https://github.com/snorkel-ai/long-context-eval.


The ALCHEmist: Automated Labeling 500x CHEaper Than LLM Data Annotators

arXiv.org Artificial Intelligence

Large pretrained models can be used as annotators, helping replace or augment crowdworkers and enabling distilling generalist models into smaller specialist models. Unfortunately, this comes at a cost: employing top-of-the-line models often requires paying thousands of dollars for API calls, while the resulting datasets are static and challenging to audit. To address these challenges, we propose a simple alternative: rather than directly querying labels from pretrained models, we task models to generate programs that can produce labels. These programs can be stored and applied locally, re-used and extended, and cost orders of magnitude less. Our system, Alchemist, obtains comparable to or better performance than large language model-based annotation in a range of tasks for a fraction of the cost: on average, improvements amount to a 12.9% enhancement while the total labeling costs across all datasets are reduced by a factor of approximately 500x.