Sadowski, Peter
Deep Learning Predicts Mammographic Breast Density in Clinical Breast Ultrasound Images
Bunnell, Arianna, Valdez, Dustin, Wolfgruber, Thomas K., Quon, Brandon, Hung, Kailee, Hernandez, Brenda Y., Seto, Todd B., Killeen, Jeffrey, Miyoshi, Marshall, Sadowski, Peter, Shepherd, John A.
Background: Breast density, as derived from mammographic images and defined by the American College of Radiology's Breast Imaging Reporting and Data System (BI-RADS), is one of the strongest risk factors for breast cancer. Breast ultrasound (BUS) is an alternative breast cancer screening modality, particularly useful for early detection in low-resource, rural contexts. The purpose of this study was to explore an artificial intelligence (AI) model to predict BI-RADS mammographic breast density category from clinical, handheld BUS imaging. Methods: All data are sourced from the Hawaii and Pacific Islands Mammography Registry. We compared deep learning methods from BUS imaging, as well as machine learning models from image statistics alone. The use of AI-derived BUS density as a risk factor for breast cancer was then compared to clinical BI-RADS breast density while adjusting for age. The BUS data were split by individual into 70/20/10% groups for training, validation, and testing. Results: 405,120 clinical BUS images from 14.066 women were selected for inclusion in this study, resulting in 9.846 women for training (302,574 images), 2,813 for validation (11,223 images), and 1,406 for testing (4,042 images). On the held-out testing set, the strongest AI model achieves AUROC 0.854 predicting BI-RADS mammographic breast density from BUS imaging and outperforms all shallow machine learning methods based on image statistics. In cancer risk prediction, age-adjusted AI BUS breast density predicted 5-year breast cancer risk with 0.633 AUROC, as compared to 0.637 AUROC from age-adjusted clinical breast density. Conclusions: BI-RADS mammographic breast density can be estimated from BUS imaging with high accuracy using a deep learning model. Furthermore, we demonstrate that AI-derived BUS breast density is predictive of 5-year breast cancer risk in our population.
Learning a Clinically-Relevant Concept Bottleneck for Lesion Detection in Breast Ultrasound
Bunnell, Arianna, Glaser, Yannik, Valdez, Dustin, Wolfgruber, Thomas, Altamirano, Aleen, Gonzรกlez, Carol Zamora, Hernandez, Brenda Y., Sadowski, Peter, Shepherd, John A.
Detecting and classifying lesions in breast ultrasound images is a promising application of artificial intelligence (AI) for reducing the burden of cancer in regions with limited access to mammography. Such AI systems are more likely to be useful in a clinical setting if their predictions can be explained to a radiologist. This work proposes an explainable AI model that provides interpretable predictions using a standard lexicon from the American College of Radiology's Breast Imaging and Reporting Data System (BI-RADS). The model is a deep neural network featuring a concept bottleneck layer in which known BI-RADS features are predicted before making a final cancer classification. This enables radiologists to easily review the predictions of the AI system and potentially fix errors in real time by modifying the concept predictions. In experiments, a model is developed on 8,854 images from 994 women with expert annotations and histological cancer labels. The model outperforms state-of-the-art lesion detection frameworks with 48.9 average precision on the held-out testing set, and for cancer classification, concept intervention is shown to increase performance from 0.876 to 0.885 area under the receiver operating characteristic curve.
WV-Net: A foundation model for SAR WV-mode satellite imagery trained using contrastive self-supervised learning on 10 million images
Glaser, Yannik, Stopa, Justin E., Wolniewicz, Linnea M., Foster, Ralph, Vandemark, Doug, Mouche, Alexis, Chapron, Bertrand, Sadowski, Peter
The European Space Agency's Copernicus Sentinel-1 (S-1) mission is a constellation of C-band synthetic aperture radar (SAR) satellites that provide unprecedented monitoring of the world's oceans. S-1's wave mode (WV) captures 20x20 km image patches at 5 m pixel resolution and is unaffected by cloud cover or time-of-day. The mission's open data policy has made SAR data easily accessible for a range of applications, but the need for manual image annotations is a bottleneck that hinders the use of machine learning methods. This study uses nearly 10 million WV-mode images and contrastive self-supervised learning to train a semantic embedding model called WV-Net. In multiple downstream tasks, WV-Net outperforms a comparable model that was pre-trained on natural images (ImageNet) with supervised learning. Experiments show improvements for estimating wave height (0.50 vs 0.60 RMSE using linear probing), estimating near-surface air temperature (0.90 vs 0.97 RMSE), and performing multilabel-classification of geophysical and atmospheric phenomena (0.96 vs 0.95 micro-averaged AUROC). WV-Net embeddings are also superior in an unsupervised image-retrieval task and scale better in data-sparse settings. Together, these results demonstrate that WV-Net embeddings can support geophysical research by providing a convenient foundation model for a variety of data analysis and exploration tasks.
Diffusion Models for High-Resolution Solar Forecasts
Hatanaka, Yusuke, Glaser, Yannik, Galgon, Geoff, Torri, Giuseppe, Sadowski, Peter
Forecasting future weather and climate is inherently difficult. Machine learning offers new approaches to increase the accuracy and computational efficiency of forecasts, but current methods are unable to accurately model uncertainty in high-dimensional predictions. Score-based diffusion models offer a new approach to modeling probability distributions over many dependent variables, and in this work, we demonstrate how they provide probabilistic forecasts of weather and climate variables at unprecedented resolution, speed, and accuracy. We apply the technique to day-ahead solar irradiance forecasts by generating many samples from a diffusion model trained to super-resolve coarse-resolution numerical weather predictions to high-resolution weather satellite observations.
Sherpa: Robust Hyperparameter Optimization for Machine Learning
Hertel, Lars, Collado, Julian, Sadowski, Peter, Ott, Jordan, Baldi, Pierre
Sherpa is a hyperparameter optimization library for machine learning models. It is specifically designed for problems with computationally expensive, iterative function evaluations, such as the hyperparameter tuning of deep neural networks. With Sherpa, scientists can quickly optimize hyperparameters using a variety of powerful and interchangeable algorithms. Sherpa can be run on either a single machine or in parallel on a cluster. Finally, an interactive dashboard enables users to view the progress of models as they are trained, cancel trials, and explore which hyperparameter combinations are working best. Sherpa empowers machine learning practitioners by automating the more tedious aspects of model tuning. Its source code and documentation are available at https://github.com/sherpa-ai/sherpa.
Learning in the Machine: Random Backpropagation and the Deep Learning Channel
Baldi, Pierre, Sadowski, Peter, Lu, Zhiqin
Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.
Decorrelated Jet Substructure Tagging using Adversarial Neural Networks
Shimmin, Chase, Sadowski, Peter, Baldi, Pierre, Weik, Edison, Whiteson, Daniel, Goul, Edward, Sรธgaard, Andreas
We describe a strategy for constructing a neural network jet substructure tagger which powerfully discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This reduces the impact of systematic uncertainties in background modeling while enhancing signal purity, resulting in improved discovery significance relative to existing taggers. The network is trained using an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating from a boosted resonance decay are discriminated from a background of nonresonant quark and gluon jets. We show that in the presence of systematic uncertainties on the background rate, our adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural network, despite having a slightly worse signal-background separation power. We generalize the adversarial training technique to include a parametric dependence on the signal hypothesis, training a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous range of hypothetical resonance masses, after training on discrete choices of the signal mass.
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment using Deep Neural Networks
Racah, Evan, Ko, Seyoon, Sadowski, Peter, Bhimji, Wahid, Tull, Craig, Oh, Sang-Yun, Baldi, Pierre, Prabhat, null
Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. In this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networks can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.
A Theory of Local Learning, the Learning Channel, and the Optimality of Backpropagation
Baldi, Pierre, Sadowski, Peter
In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. We estimate the learning channel capacity associated with several algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost, even in recurrent networks. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules, introduces the learning channel which enables a formal analysis of the optimality of backpropagation, and explains the sparsity of the space of learning rules discovered so far.
Learning Activation Functions to Improve Deep Neural Networks
Agostinelli, Forest, Hoffman, Matthew, Sadowski, Peter, Baldi, Pierre
Artificial neural networks typically have a fixed, non-linear activation function at each neuron. We have designed a novel form of piecewise linear activation function that is learned independently for each neuron using gradient descent. With this adaptive activation function, we are able to improve upon deep neural network architectures composed of static rectified linear units, achieving state-of-the-art performance on CIFAR-10 (7.51%), CIFAR-100 (30.83%), and a benchmark from high-energy physics involving Higgs boson decay modes.