Rubinstein, Alexander
Do Deep Neural Network Solutions Form a Star Domain?
Sonthalia, Ankit, Rubinstein, Alexander, Abbasnejad, Ehsan, Oh, Seong Joon
It has recently been conjectured that neural network solution sets reachable via stochastic gradient descent (SGD) are convex, considering permutation invariances (Entezari et al., 2022). This means that a linear path can connect two independent solutions with low loss, given the weights of one of the models are appropriately permuted. However, current methods to test this theory often require very wide networks to succeed. In this work, we conjecture that more generally, the SGD solution set is a "star domain" that contains a "star model" that is linearly connected to all the other solutions via paths with low loss values, modulo permutations. We propose the Starlight algorithm that finds a star model of a given learning task. We validate our claim by showing that this star model is linearly connected with other independently found solutions. As an additional benefit of our study, we demonstrate better uncertainty estimates on the Bayesian Model Averaging over the obtained star domain. Further, we demonstrate star models as potential substitutes for model ensembles. Our code is available at https://github.com/aktsonthalia/starlight.
Studying Large Language Model Behaviors Under Realistic Knowledge Conflicts
Kortukov, Evgenii, Rubinstein, Alexander, Nguyen, Elisa, Oh, Seong Joon
In RAG, the model's knowledge can be updated from documents provided in context. This leads to cases of conflict between the model's parametric knowledge and the contextual information, where the model may not always update its knowledge. Previous work studied knowledge conflicts by creating synthetic documents that contradict the model's correct parametric answers. We present a framework for studying knowledge conflicts in a realistic setup. We update incorrect parametric knowledge using real conflicting documents. This reflects how knowledge conflicts arise in practice. In this realistic scenario, we find that knowledge updates fail less often than previously reported. In cases where the models still fail to update their answers, we find a parametric bias: the incorrect parametric answer appearing in context makes the knowledge update likelier to fail. These results suggest that the factual parametric knowledge of LLMs can negatively influence their reading abilities and behaviors.
Shortcut Bias Mitigation via Ensemble Diversity Using Diffusion Probabilistic Models
Scimeca, Luca, Rubinstein, Alexander, Teney, Damien, Oh, Seong Joon, Nicolicioiu, Armand Mihai, Bengio, Yoshua
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to a phenomenon known as simplicity bias, where a model relies on erroneous, easy-to-learn cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting Diffusion Probabilistic Models (DPMs) for shortcut bias mitigation. We show that at particular training intervals, DPMs can generate images with novel feature combinations, even when trained on images displaying correlated input features. We leverage this crucial property to generate synthetic counterfactuals to increase model diversity via ensemble disagreement. We show that DPM-guided diversification is sufficient to remove dependence on primary shortcut cues, without a need for additional supervised signals. We further empirically quantify its efficacy on several diversification objectives, and finally show improved generalization and diversification performance on par with prior work that relies on auxiliary data collection.
Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts in Underspecified Visual Tasks
Scimeca, Luca, Rubinstein, Alexander, Nicolicioiu, Armand Mihai, Teney, Damien, Bengio, Yoshua
Spurious correlations in the data, where multiple cues are predictive of the target labels, often lead to shortcut learning phenomena, where a model may rely on erroneous, easy-to-learn, cues while ignoring reliable ones. In this work, we propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs). We discover that DPMs have the inherent capability to represent multiple visual cues independently, even when they are largely correlated in the training data. We leverage this characteristic to encourage model diversity and empirically show the efficacy of the approach with respect to several diversification objectives. We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
Trustworthy Machine Learning
Mucsányi, Bálint, Kirchhof, Michael, Nguyen, Elisa, Rubinstein, Alexander, Oh, Seong Joon
As machine learning technology gets applied to actual products and solutions, new challenges have emerged. Models unexpectedly fail to generalize to small changes in the distribution, tend to be confident on novel data they have never seen, or cannot communicate the rationale behind their decisions effectively with the end users. Collectively, we face a trustworthiness issue with the current machine learning technology. This textbook on Trustworthy Machine Learning (TML) covers a theoretical and technical background of four key topics in TML: Out-of-Distribution Generalization, Explainability, Uncertainty Quantification, and Evaluation of Trustworthiness. We discuss important classical and contemporary research papers of the aforementioned fields and uncover and connect their underlying intuitions. The book evolved from the homonymous course at the University of T\"ubingen, first offered in the Winter Semester of 2022/23. It is meant to be a stand-alone product accompanied by code snippets and various pointers to further sources on topics of TML. The dedicated website of the book is https://trustworthyml.io/.