Goto

Collaborating Authors

 Rossi, Francesca


Incorporating Behavioral Constraints in Online AI Systems

arXiv.org Artificial Intelligence

AI systems that learn through reward feedback about the actions they take are increasingly deployed in domains that have significant impact on our daily life. However, in many cases the online rewards should not be the only guiding criteria, as there are additional constraints and/or priorities imposed by regulations, values, preferences, or ethical principles. We detail a novel online agent that learns a set of behavioral constraints by observation and uses these learned constraints as a guide when making decisions in an online setting while still being reactive to reward feedback. To define this agent, we propose to adopt a novel extension to the classical contextual multi-armed bandit setting and we provide a new algorithm called Behavior Constrained Thompson Sampling (BCTS) that allows for online learning while obeying exogenous constraints. Our agent learns a constrained policy that implements the observed behavioral constraints demonstrated by a teacher agent, and then uses this constrained policy to guide the reward-based online exploration and exploitation. We characterize the upper bound on the expected regret of the contextual bandit algorithm that underlies our agent and provide a case study with real world data in two application domains. Our experiments show that the designed agent is able to act within the set of behavior constraints without significantly degrading its overall reward performance.


Towards Composable Bias Rating of AI Services

arXiv.org Artificial Intelligence

A new wave of decision-support systems are being built today using AI services that draw insights from data (like text and video) and incorporate them in human-in-the-loop assistance. However, just as we expect humans to be ethical, the same expectation needs to be met by automated systems that increasingly get delegated to act on their behalf. A very important aspect of an ethical behavior is to avoid (intended, perceived, or accidental) bias. Bias occurs when the data distribution is not representative enough of the natural phenomenon one wants to model and reason about. The possibly biased behavior of a service is hard to detect and handle if the AI service is merely being used and not developed from scratch, since the training data set is not available. In this situation, we envisage a 3rd party rating agency that is independent of the API producer or consumer and has its own set of biased and unbiased data, with customizable distributions. We propose a 2-step rating approach that generates bias ratings signifying whether the AI service is unbiased compensating, data-sensitive biased, or biased. The approach also works on composite services. We implement it in the context of text translation and report interesting results.


Modelling Ethical Theories Compactly

AAAI Conferences

Recently a large attention has been devoted to the ethical issues arising around the design and the implementation of artificial agents. This is due to the fact that humans and machines more and more often need to collaborate to decide on actions to take or decisions to make. Such decisions should be not only correct and optimal from the point of view of the overall goal to be reached, but should also agree to some form of moral values which are aligned to the human ones. Examples of such scenarios can be seen in autonomous vehicles, medical diagnosis support systems, and many other domains, where humans and artificial intelligent systems cooperate. One of the main issues arising in this context regards ways to model and reason with moral values. In this paper we discuss the possible use of AI compact preference models as a promising approach to model, reason, and embed moral values in decision support systems.


Embedding Ethical Principles in Collective Decision Support Systems

AAAI Conferences

The future will see autonomous machines acting in the same environment as humans, in areas as diverse as driving, assistive technology, and health care. Think of self-driving cars, companion robots, and medical diagnosis support systems. We also believe that humans and machines will often need to work together and agree on common decisions. Thus hybrid collective decision making systems will be in great need. In this scenario, both machines and collective decision making systems should follow some form of moral values and ethical principles (appropriate to where they will act but always aligned to humans'), as well as safety constraints. In fact, humans would accept and trust more machines that behave as ethically as other humans in the same environment. Also, these principles would make it easier for machines to determine their actions and explain their behavior in terms understandable by humans. Moreover, often machines and humans will need to make decisions together, either through consensus or by reaching a compromise. This would be facilitated by shared moral values and ethical principles.


Beyond the Turing Test

AI Magazine

The articles in this special issue of AI Magazine include those that propose specific tests, and those that look at the challenges inherent in building robust, valid, and reliable tests for advancing the state of the art in AI.


Beyond the Turing Test

AI Magazine

Within the field, the test is widely recognized as a pioneering landmark, but also is now seen as a distraction, designed over half a century ago, and too crude to really measure intelligence. Intelligence is, after all, a multidimensional variable, and no one test could possibly ever be definitive truly to measure it. Moreover, the original test, at least in its standard implementations, has turned out to be highly gameable, arguably an exercise in deception rather than a true measure of anything especially correlated with intelligence. The much ballyhooed 2015 Turing test winner Eugene Goostman, for instance, pretends to be a thirteen-year-old foreigner and proceeds mainly by ducking questions and returning canned one-liners; it cannot see, it cannot think, and it is certainly a long way from genuine artificial general intelligence.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.


Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter

AI Magazine

Artificial intelligence (AI) research has explored a variety of problems and approaches since its inception, but for the last 20 years or so has been focused on the problems surrounding the construction of intelligent agents — systems that perceive and act in some environment. In this context, "intelligence" is related to statistical and economic notions of rationality — colloquially, the ability to make good decisions, plans, or inferences. The adoption of probabilistic and decision-theoretic representations and statistical learning methods has led to a large degree of integration and cross-fertilization among AI, machine learning, statistics, control theory, neuroscience, and other fields. The establishment of shared theoretical frameworks, combined with the availability of data and processing power, has yielded remarkable successes in various component tasks such as speech recognition, image classification, autonomous vehicles, machine translation, legged locomotion, and question-answering systems. As capabilities in these areas and others cross the threshold from laboratory research to economically valuable technologies, a virtuous cycle takes hold whereby even small improvements in performance are worth large sums of money, prompting greater investments in research. There is now a broad consensus that AI research is progressing steadily, and that its impact on society is likely to increase. The potential benefits are huge, since everything that civilization has to offer is a product of human intelligence; we cannot predict what we might achieve when this intelligence is magnified by the tools AI may provide, but the eradication of disease and poverty are not unfathomable. Because of the great potential of AI, it is important to research how to reap its benefits while avoiding potential pitfalls. The progress in AI research makes it timely to focus research not only on making AI more capable, but also on maximizing the societal benefit of AI. Such considerations motivated the AAAI 2008–09 Presidential Panel on Long-Term AI Futures and other projects on AI impacts, and constitute a significant expansion of the field of AI itself, which up to now has focused largely on techniques that are neutral with respect to purpose. We recommend expanded research aimed at ensuring that increasingly capable AI systems are robust and beneficial: our AI systems must do what we want them to do. The attached research priorities document [see page X] gives many examples of such research directions that can help maximize the societal benefit of AI. This research is by necessity interdisciplinary, because it involves both society and AI. It ranges from economics, law and philosophy to computer security, formal methods and, of course, various branches of AI itself. In summary, we believe that research on how to make AI systems robust and beneficial is both important and timely, and that there are concrete research directions that can be pursued today.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.