Goto

Collaborating Authors

 Ritter, Alan


How to Protect Yourself from 5G Radiation? Investigating LLM Responses to Implicit Misinformation

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) are widely deployed in diverse scenarios, the extent to which they could tacitly spread misinformation emerges as a critical safety concern. Current research primarily evaluates LLMs on explicit false statements, overlooking how misinformation often manifests subtly as unchallenged premises in real-world user interactions. We curated ECHOMIST, the first comprehensive benchmark for implicit misinformation, where the misinformed assumptions are embedded in a user query to LLMs. ECHOMIST is based on rigorous selection criteria and carefully curated data from diverse sources, including real-world human-AI conversations and social media interactions. We also introduce a new evaluation metric to measure whether LLMs can recognize and counter false information rather than amplify users' misconceptions. Through an extensive empirical study on a wide range of LLMs, including GPT-4, Claude, and Llama, we find that current models perform alarmingly poorly on this task, often failing to detect false premises and generating misleading explanations. Our findings underscore the critical need for an increased focus on implicit misinformation in LLM safety research.


Probabilistic Reasoning with LLMs for k-anonymity Estimation

arXiv.org Artificial Intelligence

Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a novel numerical reasoning task under uncertainty, focusing on estimating the k-anonymity of user-generated documents containing privacy-sensitive information. We propose BRANCH, which uses LLMs to factorize a joint probability distribution to estimate the k-value-the size of the population matching the given information-by modeling individual pieces of textual information as random variables. The probability of each factor occurring within a population is estimated using standalone LLMs or retrieval-augmented generation systems, and these probabilities are combined into a final k-value. Our experiments show that this method successfully estimates the correct k-value 67% of the time, an 11% increase compared to GPT-4o chain-of-thought reasoning. Additionally, we leverage LLM uncertainty to develop prediction intervals for k-anonymity, which include the correct value in nearly 92% of cases.


What are Foundation Models Cooking in the Post-Soviet World?

arXiv.org Artificial Intelligence

The culture of the Post-Soviet states is complex, shaped by a turbulent history that continues to influence current events. In this study, we investigate the Post-Soviet cultural food knowledge of foundation models by constructing BORSch, a multimodal dataset encompassing 1147 and 823 dishes in the Russian and Ukrainian languages, centered around the Post-Soviet region. We demonstrate that leading models struggle to correctly identify the origins of dishes from Post-Soviet nations in both text-only and multimodal Question Answering (QA), instead over-predicting countries linked to the language the question is asked in. Through analysis of pretraining data, we show that these results can be explained by misleading dish-origin co-occurrences, along with linguistic phenomena such as Russian-Ukrainian code mixing. Finally, to move beyond QA-based assessments, we test models' abilities to produce accurate visual descriptions of dishes. The weak correlation between this task and QA suggests that QA alone may be insufficient as an evaluation of cultural understanding. To foster further research, we will make BORSch publicly available at https://github.com/alavrouk/BORSch.


Seeing the Forest for the Trees: A Large Scale, Continuously Updating Meta-Analysis of Frontier LLMs

arXiv.org Artificial Intelligence

The surge of LLM studies makes synthesizing their findings challenging. Meta-analysis can uncover important trends across studies, but its use is limited by the time-consuming nature of manual data extraction. Our study presents a semi-automated approach for meta-analysis that accelerates data extraction using LLMs. It automatically identifies relevant arXiv papers, extracts experimental results and related attributes, and organizes them into a structured dataset. We conduct a comprehensive meta-analysis of frontier LLMs using an automatically extracted dataset, reducing the effort of paper surveying and data extraction by more than 93\% compared to manual approaches. We validate our dataset by showing that it reproduces key findings from a recent manual meta-analysis about Chain-of-Thought (CoT), and also uncovers new insights that go beyond it, showing for example that in-context examples benefit multimodal tasks but offer limited gains in mathematical tasks compared to CoT. Our automatically updatable dataset enables continuous tracking of target models by extracting evaluation studies as new data becomes available. Through our scientific artifacts and empirical analysis, we provide novel insights into LLMs while facilitating ongoing meta-analyses of their behavior.


Balancing the Budget: Understanding Trade-offs Between Supervised and Preference-Based Finetuning

arXiv.org Artificial Intelligence

Post-training of Large Language Models often involves a pipeline of Supervised Finetuning (SFT) followed by Preference Finetuning (PFT) using methods like Direct Preference Optimization. Both stages require annotated data that are very different in structure and costs. We study how to optimally allocate a fixed training data budget between the two stages, through extensive experiments spanning four diverse tasks, multiple model sizes and various data annotation costs. Our findings reveal that just SFT on the base model dominates performance in low-data regimes ($<1,000$ annotated examples). With larger data-budgets, we observe that a combination of SFT and PFT, often with increasing portions allocated towards preference data yields optimal performance. However, completely eliminating SFT and running PFT directly on the base model yields suboptimal performance, described as the cold start problem on tasks like mathematics. We observe that this is due to the distribution shift arising from using DPO directly on the base model to elicit step-by-step reasoning. This limitation can be effectively addressed by allocating even a small portion ($<10$%) of the budget to SFT first, resulting in performance improvements of $15-20$% on analytical benchmarks like GSM8k. These results provide actionable insights for researchers and practitioners optimizing model development under budget constraints, where high-quality data curation often represents a significant portion of the total costs of model development.


Measuring, Modeling, and Helping People Account for Privacy Risks in Online Self-Disclosures with AI

arXiv.org Artificial Intelligence

In pseudonymous online fora like Reddit, the benefits of self-disclosure are often apparent to users (e.g., I can vent about my in-laws to understanding strangers), but the privacy risks are more abstract (e.g., will my partner be able to tell that this is me?). Prior work has sought to develop natural language processing (NLP) tools that help users identify potentially risky self-disclosures in their text, but none have been designed for or evaluated with the users they hope to protect. Absent this assessment, these tools will be limited by the social-technical gap: users need assistive tools that help them make informed decisions, not paternalistic tools that tell them to avoid self-disclosure altogether. To bridge this gap, we conducted a study with N = 21 Reddit users; we had them use a state-of-the-art NLP disclosure detection model on two of their authored posts and asked them questions to understand if and how the model helped, where it fell short, and how it could be improved to help them make more informed decisions. Despite its imperfections, users responded positively to the model and highlighted its use as a tool that can help them catch mistakes, inform them of risks they were unaware of, and encourage self-reflection. However, our work also shows how, to be useful and usable, AI for supporting privacy decision-making must account for posting context, disclosure norms, and users' lived threat models, and provide explanations that help contextualize detected risks.


Granular Privacy Control for Geolocation with Vision Language Models

arXiv.org Artificial Intelligence

Vision Language Models (VLMs) are rapidly advancing in their capability to answer information-seeking questions. As these models are widely deployed in consumer applications, they could lead to new privacy risks due to emergent abilities to identify people in photos, geolocate images, etc. As we demonstrate, somewhat surprisingly, current open-source and proprietary VLMs are very capable image geolocators, making widespread geolocation with VLMs an immediate privacy risk, rather than merely a theoretical future concern. As a first step to address this challenge, we develop a new benchmark, GPTGeoChat, to test the ability of VLMs to moderate geolocation dialogues with users. We collect a set of 1,000 image geolocation conversations between in-house annotators and GPT-4v, which are annotated with the granularity of location information revealed at each turn. Using this new dataset, we evaluate the ability of various VLMs to moderate GPT-4v geolocation conversations by determining when too much location information has been revealed. We find that custom fine-tuned models perform on par with prompted API-based models when identifying leaked location information at the country or city level; however, fine-tuning on supervised data appears to be needed to accurately moderate finer granularities, such as the name of a restaurant or building.


NEO-BENCH: Evaluating Robustness of Large Language Models with Neologisms

arXiv.org Artificial Intelligence

The performance of Large Language Models (LLMs) degrades from the temporal drift between data used for model training and newer text seen during inference. One understudied avenue of language change causing data drift is the emergence of neologisms -- new word forms -- over time. We create a diverse resource of recent English neologisms by using several popular collection methods. We analyze temporal drift using neologisms by comparing sentences containing new words with near-identical sentences that replace neologisms with existing substitute words. Model performance is nearly halved in machine translation when a single neologism is introduced in a sentence. Motivated by these results, we construct a benchmark to evaluate LLMs' ability to generalize to neologisms with various natural language understanding tasks and model perplexity. Models with later knowledge cutoff dates yield lower perplexities and perform better in downstream tasks. LLMs are also affected differently based on the linguistic origins of words, indicating that neologisms are complex for static LLMs to address. We will release our benchmark and code for reproducing our experiments.


Constrained Decoding for Cross-lingual Label Projection

arXiv.org Artificial Intelligence

Zero-shot cross-lingual transfer utilizing multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data. However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods. Therefore, it is common to exploit translation and label projection to further improve the performance by (1) translating training data that is available in a high-resource language (e.g., English) together with the gold labels into low-resource languages, and/or (2) translating test data in low-resource languages to a high-source language to run inference on, then projecting the predicted span-level labels back onto the original test data. However, state-of-the-art marker-based label projection methods suffer from translation quality degradation due to the extra label markers injected in the input to the translation model. In this work, we explore a new direction that leverages constrained decoding for label projection to overcome the aforementioned issues. Our new method not only can preserve the quality of translated texts but also has the versatility of being applicable to both translating training and translating test data strategies. This versatility is crucial as our experiments reveal that translating test data can lead to a considerable boost in performance compared to translating only training data. We evaluate on two cross-lingual transfer tasks, namely Named Entity Recognition and Event Argument Extraction, spanning 20 languages. The results demonstrate that our approach outperforms the state-of-the-art marker-based method by a large margin and also shows better performance than other label projection methods that rely on external word alignment.


Stanceosaurus 2.0: Classifying Stance Towards Russian and Spanish Misinformation

arXiv.org Artificial Intelligence

The Stanceosaurus corpus (Zheng et al., 2022) was designed to provide high-quality, annotated, 5-way stance data extracted from Twitter, suitable for analyzing cross-cultural and cross-lingual misinformation. In the Stanceosaurus 2.0 iteration, we extend this framework to encompass Russian and Spanish. The former is of current significance due to prevalent misinformation amid escalating tensions with the West and the violent incursion into Ukraine. The latter, meanwhile, represents an enormous community that has been largely overlooked on major social media platforms. By incorporating an additional 3,874 Spanish and Russian tweets over 41 misinformation claims, our objective is to support research focused on these issues. To demonstrate the value of this data, we employed zero-shot cross-lingual transfer on multilingual BERT, yielding results on par with the initial Stanceosaurus study with a macro F1 score of 43 for both languages. This underlines the viability of stance classification as an effective tool for identifying multicultural misinformation.