Goto

Collaborating Authors

 Rice, Eric


Peer Disambiguation in Self-Reported Surveys using Graph Attention Networks

arXiv.org Artificial Intelligence

Studying peer relationships is crucial in solving complex challenges underserved communities face and designing interventions. The effectiveness of such peer-based interventions relies on accurate network data regarding individual attributes and social influences. However, these datasets are often collected through self-reported surveys, introducing ambiguities in network construction. These ambiguities make it challenging to fully utilize the network data to understand the issues and to design the best interventions. We propose and solve two variations of link ambiguities in such network data - (i) which among the two candidate links exists, and (ii) if a candidate link exists. We design a Graph Attention Network (GA T) that accounts for personal attributes and network relationships on real-world data with real and simulated ambiguities. We also demonstrate that by resolving these ambiguities, we improve network accuracy, and in turn, improve suicide risk prediction. We also uncover patterns using GNNExplainer to provide additional insights into vital features and relationships. This research demonstrates the potential of Graph Neural Networks (GNN) to advance real-world network data analysis facilitating more effective peer interventions across various fields.


OATH-Frames: Characterizing Online Attitudes Towards Homelessness with LLM Assistants

arXiv.org Artificial Intelligence

Warning: Contents of this paper may be upsetting. Public attitudes towards key societal issues, expressed on online media, are of immense value in policy and reform efforts, yet challenging to understand at scale. We study one such social issue: homelessness in the U.S., by leveraging the remarkable capabilities of large language models to assist social work experts in analyzing millions of posts from Twitter. We introduce a framing typology: Online Attitudes Towards Homelessness (OATH) Frames: nine hierarchical frames capturing critiques, responses and perceptions. We release annotations with varying degrees of assistance from language models, with immense benefits in scaling: 6.5x speedup in annotation time while only incurring a 3 point F1 reduction in performance with respect to the domain experts. Our experiments demonstrate the value of modeling OATH-Frames over existing sentiment and toxicity classifiers. Our large-scale analysis with predicted OATH-Frames on 2.4M posts on homelessness reveal key trends in attitudes across states, time periods and vulnerable populations, enabling new insights on the issue. Our work provides a general framework to understand nuanced public attitudes at scale, on issues beyond homelessness.


Learning Optimal and Fair Policies for Online Allocation of Scarce Societal Resources from Data Collected in Deployment

arXiv.org Artificial Intelligence

We study the problem of allocating scarce societal resources of different types (e.g., permanent housing, deceased donor kidneys for transplantation, ventilators) to heterogeneous allocatees on a waitlist (e.g., people experiencing homelessness, individuals suffering from end-stage renal disease, Covid-19 patients) based on their observed covariates. We leverage administrative data collected in deployment to design an online policy that maximizes expected outcomes while satisfying budget constraints, in the long run. Our proposed policy waitlists each individual for the resource maximizing the difference between their estimated mean treatment outcome and the estimated resource dual-price or, roughly, the opportunity cost of using the resource. Resources are then allocated as they arrive, in a first-come first-serve fashion. We demonstrate that our data-driven policy almost surely asymptotically achieves the expected outcome of the optimal out-of-sample policy under mild technical assumptions. We extend our framework to incorporate various fairness constraints. We evaluate the performance of our approach on the problem of designing policies for allocating scarce housing resources to people experiencing homelessness in Los Angeles based on data from the homeless management information system. In particular, we show that using our policies improves rates of exit from homelessness by 1.9% and that policies that are fair in either allocation or outcomes by race come at a very low price of fairness.


Fairness in Contextual Resource Allocation Systems: Metrics and Incompatibility Results

arXiv.org Artificial Intelligence

We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.


Fair Influence Maximization: A Welfare Optimization Approach

arXiv.org Artificial Intelligence

Several social interventions (e.g., suicide and HIV prevention) leverage social network information to maximize outreach. Algorithmic influence maximization techniques have been proposed to aid with the choice of influencers (or peer leaders) in such interventions. Traditional algorithms for influence maximization have not been designed with social interventions in mind. As a result, they may disproportionately exclude minority communities from the benefits of the intervention. This has motivated research on fair influence maximization. Existing techniques require committing to a single domain-specific fairness measure. This makes it hard for a decision maker to meaningfully compare these notions and their resulting trade-offs across different applications. We address these shortcomings by extending the principles of cardinal welfare to the influence maximization setting, which is underlain by complex connections between members of different communities. We generalize the theory regarding these principles and show under what circumstances these principles can be satisfied by a welfare function. We then propose a family of welfare functions that are governed by a single inequity aversion parameter which allows a decision maker to study task-dependent trade-offs between fairness and total influence and effectively trade off quantities like influence gap by varying this parameter. We use these welfare functions as a fairness notion to rule out undesirable allocations. We show that the resulting optimization problem is monotone and submodular and can be solved with optimality guarantees. Finally, we carry out a detailed experimental analysis on synthetic and real social networks and should that high welfare can be achieved without sacrificing the total influence significantly. Interestingly we can show there exists welfare functions that empirically satisfy all of the principles.


Maximizing Influence in an Unknown Social Network

AAAI Conferences

In many real world applications of influence maximization, practitioners intervene in a population whose social structure is initially unknown. This poses a multiagent systems challenge to act under uncertainty about how the agents are connected. We formalize this problem by introducing exploratory influence maximization, in which an algorithm queries individual network nodes (agents) to learn their links. The goal is to locate a seed set nearly as influential as the global optimum using very few queries. We show that this problem is intractable for general graphs. However, real world networks typically have community structure, where nodes are arranged in densely connected subgroups. We present the ARISEN algorithm, which leverages community structure to find an influential seed set. Experiments on real world networks of homeless youth, village populations in India, and others demonstrate ARISEN's strong empirical performance. To formally demonstrate how ARISEN exploits community structure, we prove an approximation guarantee for ARISEN on graphs drawn from the Stochastic Block Model.


Influence Maximization for Social Network Based Substance Abuse Prevention

AAAI Conferences

Substance use and abuse is a significant public health problem in the United States. Group-based intervention programs offer a promising means of reducing substance abuse. While effective, inappropriate intervention groups can result in an increase in deviant behaviors among participants, a process known as deviancy training. In this paper, we present GUIDE, an AI-based decision aid that leverages social network information to optimize the structure of the intervention groups.


Evidence From the Past: AI Decision Aids to Improve Housing Systems for Homeless Youth

AAAI Conferences

Could an AI decision aid improve housing systems that assist homeless youth? There are nearly 2 million homeless youth in the United States each year. Coordinated entry systems are being used to provide homeless youth with housing assistance across the nation. Despite these efforts, the number of homeless youth still homeless and unstably housed on the street remains very high. Motivated by this fact, we initiate a first study to create AI decision aids for improving the current housing systems for homeless youth. First, we determine whether the current rubric for prioritizing youth for housing assistance can be used to predict youth's homelessness status after receiving housing assistance. We then consider building better AI decision aids and predictive models using other components of the rubric. We believe there is much potential for effective human-machine collaboration in the context of housing allocation. We plan to work with HUD and local communities to develop such systems in the future.


Preventing HIV Spread in Homeless Populations Using PSINET

AAAI Conferences

Homeless youth are prone to Human Immunodeficiency Virus (HIV) due to their engagement in high risk behavior such as unprotected sex, sex under influence of drugs, etc. Many non-profit agencies conduct interventions to educate and train a select group of homeless youth about HIV prevention and treatment practices and rely on word-of-mouth spread of information through their social network. Previous work in strategic selection of intervention participants does not handle uncertainties in the social network's structure and evolving network state, potentially causing significant shortcomings in spread of information. Thus, we developed PSINET, a decision support system to aid the agencies in this task. PSINET includes the following key novelties: (i) it handles uncertainties in network structure and evolving network state; (ii) it addresses these uncertainties by using POMDPs in influence maximization; and (iii) it provides algorithmic advances to allow high quality approximate solutions for such POMDPs. Simulations show that PSINET achieves around 60% more information spread over the current state-of-the-art. PSINET was developed in collaboration with My Friend's Place (a drop-in agency serving homeless youth in Los Angeles) and is currently being reviewed by their officials.