Goto

Collaborating Authors

 Rey, Samuel


Structure-Guided Input Graph for GNNs facing Heterophily

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have emerged as a promising tool to handle data exhibiting an irregular structure. However, most GNN architectures perform well on homophilic datasets, where the labels of neighboring nodes are likely to be the same. In recent years, an increasing body of work has been devoted to the development of GNN architectures for heterophilic datasets, where labels do not exhibit this low-pass behavior. In this work, we create a new graph in which nodes are connected if they share structural characteristics, meaning a higher chance of sharing their labels, and then use this new graph in the GNN architecture. To do this, we compute the k-nearest neighbors graph according to distances between structural features, which are either (i) role-based, such as degree, or (ii) global, such as centrality measures. Experiments show that the labels are smoother in this newly defined graph and that the performance of GNN architectures improves when using this alternative structure.


Redesigning graph filter-based GNNs to relax the homophily assumption

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have become a workhorse approach for learning from data defined over irregular domains, typically by implicitly assuming that the data structure is represented by a homophilic graph. However, recent works have revealed that many relevant applications involve heterophilic data where the performance of GNNs can be notably compromised. To address this challenge, we present a simple yet effective architecture designed to mitigate the limitations of the homophily assumption. The proposed architecture reinterprets the role of graph filters in convolutional GNNs, resulting in a more general architecture while incorporating a stronger inductive bias than GNNs based on filter banks. The proposed convolutional layer enhances the expressive capacity of the architecture enabling it to learn from both homophilic and heterophilic data and preventing the issue of oversmoothing. From a theoretical standpoint, we show that the proposed architecture is permutation equivariant. Finally, we show that the proposed GNNs compares favorably relative to several state-of-the-art baselines in both homophilic and heterophilic datasets, showcasing its promising potential.


Fair GLASSO: Estimating Fair Graphical Models with Unbiased Statistical Behavior

arXiv.org Machine Learning

We propose estimating Gaussian graphical models (GGMs) that are fair with respect to sensitive nodal attributes. Many real-world models exhibit unfair discriminatory behavior due to biases in data. Such discrimination is known to be exacerbated when data is equipped with pairwise relationships encoded in a graph. Additionally, the effect of biased data on graphical models is largely underexplored. We thus introduce fairness for graphical models in the form of two bias metrics to promote balance in statistical similarities across nodal groups with different sensitive attributes. Leveraging these metrics, we present Fair GLASSO, a regularized graphical lasso approach to obtain sparse Gaussian precision matrices with unbiased statistical dependencies across groups. We also propose an efficient proximal gradient algorithm to obtain the estimates. Theoretically, we express the tradeoff between fair and accurate estimated precision matrices. Critically, this includes demonstrating when accuracy can be preserved in the presence of a fairness regularizer. On top of this, we study the complexity of Fair GLASSO and demonstrate that our algorithm enjoys a fast convergence rate. Our empirical validation includes synthetic and real-world simulations that illustrate the value and effectiveness of our proposed optimization problem and iterative algorithm.


Convolutional Learning on Directed Acyclic Graphs

arXiv.org Artificial Intelligence

We develop a novel convolutional architecture tailored for learning from data defined over directed acyclic graphs (DAGs). DAGs can be used to model causal relationships among variables, but their nilpotent adjacency matrices pose unique challenges towards developing DAG signal processing and machine learning tools. To address this limitation, we harness recent advances offering alternative definitions of causal shifts and convolutions for signals on DAGs. We develop a novel convolutional graph neural network that integrates learnable DAG filters to account for the partial ordering induced by the graph topology, thus providing valuable inductive bias to learn effective representations of DAG-supported data. We discuss the salient advantages and potential limitations of the proposed DAG convolutional network (DCN) and evaluate its performance on two learning tasks using synthetic data: network diffusion estimation and source identification. DCN compares favorably relative to several baselines, showcasing its promising potential.


Robust Graph Neural Network based on Graph Denoising

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets. However, although most works assume that the graph is perfectly known, the observed topology is prone to errors stemming from observational noise, graph-learning limitations, or adversarial attacks. If ignored, these perturbations may drastically hinder the performance of GNNs. To address this limitation, this work proposes a robust implementation of GNNs that explicitly accounts for the presence of perturbations in the observed topology. For any task involving GNNs, our core idea is to i) solve an optimization problem not only over the learnable parameters of the GNN but also over the true graph, and ii) augment the fitting cost with a term accounting for discrepancies on the graph. Specifically, we consider a convolutional GNN based on graph filters and follow an alternating optimization approach to handle the (non-differentiable and constrained) optimization problem by combining gradient descent and projected proximal updates. The resulting algorithm is not limited to a particular type of graph and is amenable to incorporating prior information about the perturbations. Finally, we assess the performance of the proposed method through several numerical experiments.


Untrained Graph Neural Networks for Denoising

arXiv.org Artificial Intelligence

A fundamental problem in signal processing is to denoise a signal. While there are many well-performing methods for denoising signals defined on regular supports, such as images defined on two-dimensional grids of pixels, many important classes of signals are defined over irregular domains such as graphs. This paper introduces two untrained graph neural network architectures for graph signal denoising, provides theoretical guarantees for their denoising capabilities in a simple setup, and numerically validates the theoretical results in more general scenarios. The two architectures differ on how they incorporate the information encoded in the graph, with one relying on graph convolutions and the other employing graph upsampling operators based on hierarchical clustering. Each architecture implements a different prior over the targeted signals. To numerically illustrate the validity of the theoretical results and to compare the performance of the proposed architectures with other denoising alternatives, we present several experimental results with real and synthetic datasets.


Joint graph learning from Gaussian observations in the presence of hidden nodes

arXiv.org Artificial Intelligence

Graph learning problems are typically approached by focusing on learning the topology of a single graph when signals from all nodes are available. However, many contemporary setups involve multiple related networks and, moreover, it is often the case that only a subset of nodes is observed while the rest remain hidden. Motivated by this, we propose a joint graph learning method that takes into account the presence of hidden (latent) variables. Intuitively, the presence of the hidden nodes renders the inference task ill-posed and challenging to solve, so we overcome this detrimental influence by harnessing the similarity of the estimated graphs. To that end, we assume that the observed signals are drawn from a Gaussian Markov random field with latent variables and we carefully model the graph similarity among hidden (latent) nodes. Then, we exploit the structure resulting from the previous considerations to propose a convex optimization problem that solves the joint graph learning task by providing a regularized maximum likelihood estimator. Finally, we compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.