Ren, Tao
Bridging the Editing Gap in LLMs: FineEdit for Precise and Targeted Text Modifications
Zeng, Yiming, Yu, Wanhao, Li, Zexin, Ren, Tao, Ma, Yu, Cao, Jinghan, Chen, Xiyan, Yu, Tingting
Large Language Models (LLMs) have transformed natural language processing, yet they still struggle with direct text editing tasks that demand precise, context-aware modifications. While models like ChatGPT excel in text generation and analysis, their editing abilities often fall short, addressing only superficial issues rather than deeper structural or logical inconsistencies. In this work, we introduce a dual approach to enhance LLMs editing performance. First, we present InstrEditBench, a high-quality benchmark dataset comprising over 20,000 structured editing tasks spanning Wiki articles, LaTeX documents, code, and database Domain-specific Languages (DSL). InstrEditBench is generated using an innovative automated workflow that accurately identifies and evaluates targeted edits, ensuring that modifications adhere strictly to specified instructions without altering unrelated content. Second, we propose FineEdit, a specialized model trained on this curated benchmark. Experimental results demonstrate that FineEdit achieves significant improvements around {10\%} compared with Gemini on direct editing tasks, convincingly validating its effectiveness.
Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer
Ren, Tao, Zhang, Zishi, Li, Zehao, Jiang, Jingyang, Qin, Shentao, Li, Guanghao, Li, Yan, Zheng, Yi, Li, Xinping, Zhan, Min, Peng, Yijie
The probabilistic diffusion model (DM), generating content by inferencing through a recursive chain structure, has emerged as a powerful framework for visual generation. After pre-training on enormous unlabeled data, the model needs to be properly aligned to meet requirements for downstream applications. How to efficiently align the foundation DM is a crucial task. Contemporary methods are either based on Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL and truncated BP suffer from low sample efficiency and biased gradient estimation respectively, resulting in limited improvement or, even worse, complete training failure. To overcome the challenges, we propose the Recursive Likelihood Ratio (RLR) optimizer, a zeroth-order informed fine-tuning paradigm for DM. The zeroth-order gradient estimator enables the computation graph rearrangement within the recursive diffusive chain, making the RLR's gradient estimator an unbiased one with the lower variance than other methods. We provide theoretical guarantees for the performance of the RLR. Extensive experiments are conducted on image and video generation tasks to validate the superiority of the RLR. Furthermore, we propose a novel prompt technique that is natural for the RLR to achieve a synergistic effect.
Infant Agent: A Tool-Integrated, Logic-Driven Agent with Cost-Effective API Usage
Lei, Bin, Li, Yuchen, Zeng, Yiming, Ren, Tao, Luo, Yi, Shi, Tianyu, Gao, Zitian, Hu, Zeyu, Kang, Weitai, Chen, Qiuwu
Despite the impressive capabilities of large language models (LLMs), they currently exhibit two primary limitations, \textbf{\uppercase\expandafter{\romannumeral 1}}: They struggle to \textbf{autonomously solve the real world engineering problem}. \textbf{\uppercase\expandafter{\romannumeral 2}}: They remain \textbf{challenged in reasoning through complex logic problems}. To address these challenges, we developed the \textsc{Infant Agent}, integrating task-aware functions, operators, a hierarchical management system, and a memory retrieval mechanism. Together, these components enable large language models to sustain extended reasoning processes and handle complex, multi-step tasks efficiently, all while significantly reducing API costs. Using the \textsc{Infant Agent}, GPT-4o's accuracy on the SWE-bench-lite dataset rises from $\mathbf{0.33\%}$ to $\mathbf{30\%}$, and in the AIME-2024 mathematics competition, it increases GPT-4o's accuracy from $\mathbf{13.3\%}$ to $\mathbf{37\%}$.
FLOPS: Forward Learning with OPtimal Sampling
Ren, Tao, Zhang, Zishi, Jiang, Jinyang, Li, Guanghao, Zhang, Zeliang, Feng, Mingqian, Peng, Yijie
Given the limitations of backpropagation, perturbation-based gradient computation methods have recently gained focus for learning with only forward passes, also referred to as queries. Conventional forward learning consumes enormous queries on each data point for accurate gradient estimation through Monte Carlo sampling, which hinders the scalability of those algorithms. However, not all data points deserve equal queries for gradient estimation. In this paper, we study the problem of improving the forward learning efficiency from a novel perspective: how to reduce the gradient estimation variance with minimum cost? For this, we propose to allocate the optimal number of queries over each data in one batch during training to achieve a good balance between estimation accuracy and computational efficiency. Specifically, with a simplified proxy objective and a reparameterization technique, we derive a novel plug-and-play query allocator with minimal parameters. Theoretical results are carried out to verify its optimality. We conduct extensive experiments for fine-tuning Vision Transformers on various datasets and further deploy the allocator to two black-box applications: prompt tuning and multimodal alignment for foundation models. All findings demonstrate that our proposed allocator significantly enhances the scalability of forward-learning algorithms, paving the way for real-world applications.
Deep Reinforcement Learning for Solving Management Problems: Towards A Large Management Mode
Jiang, Jinyang, Liu, Xiaotian, Ren, Tao, Wang, Qinghao, Zheng, Yi, Du, Yufu, Peng, Yijie, Zhang, Cheng
We introduce a deep reinforcement learning (DRL) approach for solving management problems including inventory management, dynamic pricing, and recommendation. This DRL approach has the potential to lead to a large management model based on certain transformer neural network structures, resulting in an artificial general intelligence paradigm for various management tasks. Traditional methods have limitations for solving complex real-world problems, and we demonstrate how DRL can surpass existing heuristic approaches for solving management tasks. We aim to solve the problems in a unified framework, considering the interconnections between different tasks. Central to our methodology is the development of a foundational decision model coordinating decisions across the different domains through generative decision-making. Our experimental results affirm the effectiveness of our DRL-based framework in complex and dynamic business environments. This work opens new pathways for the application of DRL in management problems, highlighting its potential to revolutionize traditional business management.
NID-SLAM: Neural Implicit Representation-based RGB-D SLAM in dynamic environments
Xu, Ziheng, Niu, Jianwei, Li, Qingfeng, Ren, Tao, Chen, Chen
Neural implicit representations have been explored to enhance visual SLAM algorithms, especially in providing high-fidelity dense map. Existing methods operate robustly in static scenes but struggle with the disruption caused by moving objects. In this paper we present NID-SLAM, which significantly improves the performance of neural SLAM in dynamic environments. We propose a new approach to enhance inaccurate regions in semantic masks, particularly in marginal areas. Utilizing the geometric information present in depth images, this method enables accurate removal of dynamic objects, thereby reducing the probability of camera drift. Additionally, we introduce a keyframe selection strategy for dynamic scenes, which enhances camera tracking robustness against large-scale objects and improves the efficiency of mapping. Experiments on publicly available RGB-D datasets demonstrate that our method outperforms competitive neural SLAM approaches in tracking accuracy and mapping quality in dynamic environments.
A New Unified Deep Learning Approach with Decomposition-Reconstruction-Ensemble Framework for Time Series Forecasting
Zhang, Guowei, Ren, Tao, Yang, Yifan
A new variational mode decomposition (VMD) based deep learning approach is proposed in this paper for time series forecasting problem. Firstly, VMD is adopted to decompose the original time series into several sub-signals. Then, a convolutional neural network (CNN) is applied to learn the reconstruction patterns on the decomposed sub-signals to obtain several reconstructed sub-signals. Finally, a long short term memory (LSTM) network is employed to forecast the time series with the decomposed sub-signals and the reconstructed sub-signals as inputs. The proposed VMD-CNN-LSTM approach is originated from the decomposition-reconstruction-ensemble framework, and innovated by embedding the reconstruction, single forecasting, and ensemble steps in a unified deep learning approach. To verify the forecasting performance of the proposed approach, four typical time series datasets are introduced for empirical analysis. The empirical results demonstrate that the proposed approach outperforms consistently the benchmark approaches in terms of forecasting accuracy, and also indicate that the reconstructed sub-signals obtained by CNN is of importance for further improving the forecasting performance.