Ren, Fuji
MDEval: Evaluating and Enhancing Markdown Awareness in Large Language Models
Chen, Zhongpu, Liu, Yinfeng, Shi, Long, Wang, Zhi-Jie, Chen, Xingyan, Zhao, Yu, Ren, Fuji
Large language models (LLMs) are expected to offer structured Markdown responses for the sake of readability in web chatbots (e.g., ChatGPT). Although there are a myriad of metrics to evaluate LLMs, they fail to evaluate the readability from the view of output content structure. To this end, we focus on an overlooked yet important metric -- Markdown Awareness, which directly impacts the readability and structure of the content generated by these language models. In this paper, we introduce MDEval, a comprehensive benchmark to assess Markdown Awareness for LLMs, by constructing a dataset with 20K instances covering 10 subjects in English and Chinese. Unlike traditional model-based evaluations, MDEval provides excellent interpretability by combining model-based generation tasks and statistical methods. Our results demonstrate that MDEval achieves a Spearman correlation of 0.791 and an accuracy of 84.1% with human, outperforming existing methods by a large margin. Extensive experimental results also show that through fine-tuning over our proposed dataset, less performant open-source models are able to achieve comparable performance to GPT-4o in terms of Markdown Awareness. To ensure reproducibility and transparency, MDEval is open sourced at https://github.com/SWUFE-DB-Group/MDEval-Benchmark.
Bridging the User-side Knowledge Gap in Knowledge-aware Recommendations with Large Language Models
Hu, Zheng, Li, Zhe, Jiao, Ziyun, Nakagawa, Satoshi, Deng, Jiawen, Cai, Shimin, Zhou, Tao, Ren, Fuji
In recent years, knowledge graphs have been integrated into recommender systems as item-side auxiliary information, enhancing recommendation accuracy. However, constructing and integrating structural user-side knowledge remains a significant challenge due to the improper granularity and inherent scarcity of user-side features. Recent advancements in Large Language Models (LLMs) offer the potential to bridge this gap by leveraging their human behavior understanding and extensive real-world knowledge. Nevertheless, integrating LLM-generated information into recommender systems presents challenges, including the risk of noisy information and the need for additional knowledge transfer. In this paper, we propose an LLM-based user-side knowledge inference method alongside a carefully designed recommendation framework to address these challenges. Our approach employs LLMs to infer user interests based on historical behaviors, integrating this user-side information with item-side and collaborative data to construct a hybrid structure: the Collaborative Interest Knowledge Graph (CIKG). Furthermore, we propose a CIKG-based recommendation framework that includes a user interest reconstruction module and a cross-domain contrastive learning module to mitigate potential noise and facilitate knowledge transfer. We conduct extensive experiments on three real-world datasets to validate the effectiveness of our method. Our approach achieves state-of-the-art performance compared to competitive baselines, particularly for users with sparse interactions.
A Review of Human Emotion Synthesis Based on Generative Technology
Ma, Fei, Li, Yukan, Xie, Yifan, He, Ying, Zhang, Yi, Ren, Hongwei, Liu, Zhou, Yao, Wei, Ren, Fuji, Yu, Fei Richard, Ni, Shiguang
Human emotion synthesis is a crucial aspect of affective computing. It involves using computational methods to mimic and convey human emotions through various modalities, with the goal of enabling more natural and effective human-computer interactions. Recent advancements in generative models, such as Autoencoders, Generative Adversarial Networks, Diffusion Models, Large Language Models, and Sequence-to-Sequence Models, have significantly contributed to the development of this field. However, there is a notable lack of comprehensive reviews in this field. To address this problem, this paper aims to address this gap by providing a thorough and systematic overview of recent advancements in human emotion synthesis based on generative models. Specifically, this review will first present the review methodology, the emotion models involved, the mathematical principles of generative models, and the datasets used. Then, the review covers the application of different generative models to emotion synthesis based on a variety of modalities, including facial images, speech, and text. It also examines mainstream evaluation metrics. Additionally, the review presents some major findings and suggests future research directions, providing a comprehensive understanding of the role of generative technology in the nuanced domain of emotion synthesis.
Generative Technology for Human Emotion Recognition: A Scope Review
Ma, Fei, Yuan, Yucheng, Xie, Yifan, Ren, Hongwei, Liu, Ivan, He, Ying, Ren, Fuji, Yu, Fei Richard, Ni, Shiguang
Affective computing stands at the forefront of artificial intelligence (AI), seeking to imbue machines with the ability to comprehend and respond to human emotions. Central to this field is emotion recognition, which endeavors to identify and interpret human emotional states from different modalities, such as speech, facial images, text, and physiological signals. In recent years, important progress has been made in generative models, including Autoencoder, Generative Adversarial Network, Diffusion Model, and Large Language Model. These models, with their powerful data generation capabilities, emerge as pivotal tools in advancing emotion recognition. However, up to now, there remains a paucity of systematic efforts that review generative technology for emotion recognition. This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024. Specifically, this survey will firstly introduce the mathematical principles of different generative models and the commonly used datasets. Subsequently, through a taxonomy, it will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities in several aspects, including data augmentation, feature extraction, semi-supervised learning, cross-domain, etc. Finally, the review will outline future research directions, emphasizing the potential of generative models to advance the field of emotion recognition and enhance the emotional intelligence of AI systems.
Graph Learning and Its Advancements on Large Language Models: A Holistic Survey
Wei, Shaopeng, Zhao, Yu, Chen, Xingyan, Li, Qing, Zhuang, Fuzhen, Liu, Ji, Ren, Fuji, Kou, Gang
Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios. Owing to its extensive application prospects, graph learning attracts copious attention. While some researchers have accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Particularly, large language models have recently had a disruptive effect on human life, but they also show relative weakness in structured scenarios. The question of how to make these models more powerful with graph learning remains open. Our survey focuses on the most recent advancements in integrating graph learning with pre-trained language models, specifically emphasizing their application within the domain of large language models. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, we propose future directions.
Disentangling Prosody Representations with Unsupervised Speech Reconstruction
Qu, Leyuan, Li, Taihao, Weber, Cornelius, Pekarek-Rosin, Theresa, Ren, Fuji, Wermter, Stefan
Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an open challenging research question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for supervised training schemes to achieve robust large-scale and speaker-independent ASR. The aim of this paper is to address the disentanglement of emotional prosody from speech based on unsupervised reconstruction. Specifically, we identify, design, implement and integrate three crucial components in our proposed speech reconstruction model Prosody2Vec: (1) a unit encoder that transforms speech signals into discrete units for semantic content, (2) a pretrained speaker verification model to generate speaker identity embeddings, and (3) a trainable prosody encoder to learn prosody representations. We first pretrain the Prosody2Vec representations on unlabelled emotional speech corpora, then fine-tune the model on specific datasets to perform Speech Emotion Recognition (SER) and Emotional Voice Conversion (EVC) tasks. Both objective (weighted and unweighted accuracies) and subjective (mean opinion score) evaluations on the EVC task suggest that Prosody2Vec effectively captures general prosodic features that can be smoothly transferred to other emotional speech. In addition, our SER experiments on the IEMOCAP dataset reveal that the prosody features learned by Prosody2Vec are complementary and beneficial for the performance of widely used speech pretraining models and surpass the state-of-the-art methods when combining Prosody2Vec with HuBERT representations.