Goto

Collaborating Authors

 Rausch, Andreas


A Spatiotemporal Radar-Based Precipitation Model for Water Level Prediction and Flood Forecasting

arXiv.org Artificial Intelligence

Study Region: Goslar and G\"ottingen, Lower Saxony, Germany. Study Focus: In July 2017, the cities of Goslar and G\"ottingen experienced severe flood events characterized by short warning time of only 20 minutes, resulting in extensive regional flooding and significant damage. This highlights the critical need for a more reliable and timely flood forecasting system. This paper presents a comprehensive study on the impact of radar-based precipitation data on forecasting river water levels in Goslar. Additionally, the study examines how precipitation influences water level forecasts in G\"ottingen. The analysis integrates radar-derived spatiotemporal precipitation patterns with hydrological sensor data obtained from ground stations to evaluate the effectiveness of this approach in improving flood prediction capabilities. New Hydrological Insights for the Region: A key innovation in this paper is the use of residual-based modeling to address the non-linearity between precipitation images and water levels, leading to a Spatiotemporal Radar-based Precipitation Model with residuals (STRPMr). Unlike traditional hydrological models, our approach does not rely on upstream data, making it independent of additional hydrological inputs. This independence enhances its adaptability and allows for broader applicability in other regions with RADOLAN precipitation. The deep learning architecture integrates (2+1)D convolutional neural networks for spatial and temporal feature extraction with LSTM for timeseries forecasting. The results demonstrate the potential of the STRPMr for capturing extreme events and more accurate flood forecasting.


LLM-Based Design Pattern Detection

arXiv.org Artificial Intelligence

--Detecting design pattern instances in unfamiliar codebases remains a challenging yet essential task for improving software quality and maintainability. Traditional static analysis tools often struggle with the complexity, variability, and lack of explicit annotations that characterize real-world pattern implementations. In this paper, we present a novel approach leveraging Large Language Models to automatically identify design pattern instances across diverse codebases. Our method focuses on recognizing the roles classes play within the pattern instances. By providing clearer insights into software structure and intent, this research aims to support developers, improve comprehension, and streamline tasks such as refactoring, maintenance, and adherence to best practices. Identifying design pattern instances in code is a valuable goal as it enables a deeper understanding of the structural and behavioral principles underlying software systems. By uncovering these patterns, developers and other stakeholders can gain insights into code quality, maintainability, and adherence to best practices, even in unfamiliar code bases. Automating this process can significantly reduce the time and effort required for code comprehension, facilitate knowledge transfer among teams, and improve software evolution and refactoring efforts.


Towards Selection and Transition Between Behavior-Based Neural Networks for Automated Driving

arXiv.org Artificial Intelligence

Autonomous driving technology is progressing rapidly, largely due to complex End To End systems based on deep neural networks. While these systems are effective, their complexity can make it difficult to understand their behavior, raising safety concerns. This paper presents a new solution a Behavior Selector that uses multiple smaller artificial neural networks (ANNs) to manage different driving tasks, such as lane following and turning. Rather than relying on a single large network, which can be burdensome, require extensive training data, and is hard to understand, the developed approach allows the system to dynamically select the appropriate neural network for each specific behavior (e.g., turns) in real time. We focus on ensuring smooth transitions between behaviors while considering the vehicles current speed and orientation to improve stability and safety. The proposed system has been tested using the AirSim simulation environment, demonstrating its effectiveness.


A Method for the Runtime Validation of AI-based Environment Perception in Automated Driving System

arXiv.org Artificial Intelligence

Environment perception is a fundamental part of the dynamic driving task executed by Autonomous Driving Systems (ADS). Artificial Intelligence (AI)-based approaches have prevailed over classical techniques for realizing the environment perception. Current safety-relevant standards for automotive systems, International Organization for Standardization (ISO) 26262 and ISO 21448, assume the existence of comprehensive requirements specifications. These specifications serve as the basis on which the functionality of an automotive system can be rigorously tested and checked for compliance with safety regulations. However, AI-based perception systems do not have complete requirements specification. Instead, large datasets are used to train AI-based perception systems. This paper presents a function monitor for the functional runtime monitoring of a two-folded AI-based environment perception for ADS, based respectively on camera and LiDAR sensors. To evaluate the applicability of the function monitor, we conduct a qualitative scenario-based evaluation in a controlled laboratory environment using a model car. The evaluation results then are discussed to provide insights into the monitor's performance and its suitability for real-world applications.


DiffBatt: A Diffusion Model for Battery Degradation Prediction and Synthesis

arXiv.org Artificial Intelligence

Battery degradation remains a critical challenge in the pursuit of green technologies and sustainable energy solutions. Despite significant research efforts, predicting battery capacity loss accurately remains a formidable task due to its complex nature, influenced by both aging and cycling behaviors. To address this challenge, we introduce a novel general-purpose model for battery degradation prediction and synthesis, DiffBatt. Leveraging an innovative combination of conditional and unconditional diffusion models with classifier-free guidance and transformer architecture, DiffBatt achieves high expressivity and scalability. DiffBatt operates as a probabilistic model to capture uncertainty in aging behaviors and a generative model to simulate battery degradation. The performance of the model excels in prediction tasks while also enabling the generation of synthetic degradation curves, facilitating enhanced model training by data augmentation. In the remaining useful life prediction task, DiffBatt provides accurate results with a mean RMSE of 196 cycles across all datasets, outperforming all other models and demonstrating superior generalizability. This work represents an important step towards developing foundational models for battery degradation.


Enhancing Multiscale Simulations with Constitutive Relations-Aware Deep Operator Networks

arXiv.org Artificial Intelligence

Multiscale problems are widely observed across diverse domains in physics and engineering. Translating these problems into numerical simulations and solving them using numerical schemes, e.g. the finite element method, is costly due to the demand of solving initial boundary-value problems at multiple scales. On the other hand, multiscale finite element computations are commended for their ability to integrate micro-structural properties into macroscopic computational analyses using homogenization techniques. Recently, neural operator-based surrogate models have shown trustworthy performance for solving a wide range of partial differential equations. In this work, we propose a hybrid method in which we utilize deep operator networks for surrogate modeling of the microscale physics. This allows us to embed the constitutive relations of the microscale into the model architecture and to predict microscale strains and stresses based on the prescribed macroscale strain inputs. Furthermore, numerical homogenization is carried out to obtain the macroscale quantities of interest. We apply the proposed approach to quasi-static problems of solid mechanics. The results demonstrate that our constitutive relations-aware DeepONet can yield accurate solutions even when being confronted with a restricted dataset during model development.


Nonlinear model reduction for operator learning

arXiv.org Artificial Intelligence

Operator learning provides methods to approximate mappings between infinite-dimensional function spaces. Deep operator networks (DeepONets) are a notable architecture in this field. Recently, an extension of DeepONet based on model reduction and neural networks, proper orthogonal decomposition (POD)-DeepONet, has been able to outperform other architectures in terms of accuracy for several benchmark tests. We extend this idea towards nonlinear model order reduction by proposing an efficient framework that combines neural networks with kernel principal component analysis (KPCA) for operator learning. Our results demonstrate the superior performance of KPCA-DeepONet over POD-DeepONet.


Assessment of the suitability of degradation models for the planning of CCTV inspections of sewer pipes

arXiv.org Artificial Intelligence

The degradation of sewer pipes poses significant economical, environmental and health concerns. The maintenance of such assets requires structured plans to perform inspections, which are more efficient when structural and environmental features are considered along with the results of previous inspection reports. The development of such plans requires degradation models that can be based on statistical and machine learning methods. This work proposes a methodology to assess their suitability to plan inspections considering three dimensions: accuracy metrics, ability to produce long-term degradation curves and explainability. Results suggest that although ensemble models yield the highest accuracy, they are unable to infer the long-term degradation of the pipes, whereas the Logistic Regression offers a slightly less accurate model that is able to produce consistent degradation curves with a high explainability. A use case is presented to demonstrate this methodology and the efficiency of model-based planning compared to the current inspection plan.


Connected Dependability Cage Approach for Safe Automated Driving

arXiv.org Artificial Intelligence

Automated driving systems can be helpful in a wide range of societal challenges, e.g., mobility-on-demand and transportation logistics for last-mile delivery, by aiding the vehicle driver or taking over the responsibility for the dynamic driving task partially or completely. Ensuring the safety of automated driving systems is no trivial task, even more so for those systems of SAE Level 3 or above. To achieve this, mechanisms are needed that can continuously monitor the system's operating conditions, also denoted as the system's operational design domain. This paper presents a safety concept for automated driving systems which uses a combination of onboard runtime monitoring via connected dependability cage and off-board runtime monitoring via a remote command control center, to continuously monitor the system's ODD. On one side, the connected dependability cage fulfills a double functionality: (1) to monitor continuously the operational design domain of the automated driving system, and (2) to transfer the responsibility in a smooth and safe manner between the automated driving system and the off-board remote safety driver, who is present in the remote command control center. On the other side, the remote command control center enables the remote safety driver the monitoring and takeover of the vehicle's control. We evaluate our safety concept for automated driving systems in a lab environment and on a test field track and report on results and lessons learned.


Towards exploring adversarial learning for anomaly detection in complex driving scenes

arXiv.org Artificial Intelligence

One of the many Autonomous Systems (ASs), such as autonomous driving cars, performs various safety-critical functions. Many of these autonomous systems take advantage of Artificial Intelligence (AI) techniques to perceive their environment. But these perceiving components could not be formally verified, since, the accuracy of such AI-based components has a high dependency on the quality of training data. So Machine learning (ML) based anomaly detection, a technique to identify data that does not belong to the training data could be used as a safety measuring indicator during the development and operational time of such AI-based components. Adversarial learning, a sub-field of machine learning has proven its ability to detect anomalies in images and videos with impressive results on simple data sets. Therefore, in this work, we investigate and provide insight into the performance of such techniques on a highly complex driving scenes dataset called Berkeley DeepDrive.