Goto

Collaborating Authors

 Rajpurkar, Pranav


FreeTumor: Large-Scale Generative Tumor Synthesis in Computed Tomography Images for Improving Tumor Recognition

arXiv.org Artificial Intelligence

Tumor is a leading cause of death worldwide, with an estimated 10 million deaths attributed to tumor-related diseases every year. AI-driven tumor recognition unlocks new possibilities for more precise and intelligent tumor screening and diagnosis. However, the progress is heavily hampered by the scarcity of annotated datasets, which demands extensive annotation efforts by radiologists. To tackle this challenge, we introduce FreeTumor, an innovative Generative AI (GAI) framework to enable large-scale tumor synthesis for mitigating data scarcity. Specifically, FreeTumor effectively leverages a combination of limited labeled data and large-scale unlabeled data for tumor synthesis training. Unleashing the power of large-scale data, FreeTumor is capable of synthesizing a large number of realistic tumors on images for augmenting training datasets. To this end, we create the largest training dataset for tumor synthesis and recognition by curating 161,310 publicly available Computed Tomography (CT) volumes from 33 sources, with only 2.3% containing annotated tumors. To validate the fidelity of synthetic tumors, we engaged 13 board-certified radiologists in a Visual Turing Test to discern between synthetic and real tumors. Rigorous clinician evaluation validates the high quality of our synthetic tumors, as they achieved only 51.1% sensitivity and 60.8% accuracy in distinguishing our synthetic tumors from real ones. Through high-quality tumor synthesis, FreeTumor scales up the recognition training datasets by over 40 times, showcasing a notable superiority over state-of-the-art AI methods including various synthesis methods and foundation models. These findings indicate promising prospects of FreeTumor in clinical applications, potentially advancing tumor treatments and improving the survival rates of patients.


ReXTrust: A Model for Fine-Grained Hallucination Detection in AI-Generated Radiology Reports

arXiv.org Artificial Intelligence

The increasing adoption of AI-generated radiology reports necessitates robust methods for detecting hallucinations--false or unfounded statements that could impact patient care. We present ReXTrust, a novel framework for fine-grained hallucination detection in AI-generated radiology reports. Our approach leverages sequences of hidden states from large vision-language models to produce finding-level hallucination risk scores. We evaluate ReXTrust on a subset of the MIMIC-CXR dataset and demonstrate superior performance compared to existing approaches, achieving an AUROC of 0.8751 across all findings and 0.8963 on clinically significant findings. Our results show that white-box approaches leveraging model hidden states can provide reliable hallucination detection for medical AI systems, potentially improving the safety and reliability of automated radiology reporting.


a2z-1 for Multi-Disease Detection in Abdomen-Pelvis CT: External Validation and Performance Analysis Across 21 Conditions

arXiv.org Artificial Intelligence

We present a comprehensive evaluation of a2z-1, an artificial intelligence (AI) model designed to analyze abdomen-pelvis CT scans for 21 time-sensitive and actionable findings. Our study focuses on rigorous assessment of the model's performance and generalizability. Large-scale retrospective analysis demonstrates an average AUC of 0.931 across 21 conditions. External validation across two distinct health systems confirms consistent performance (AUC 0.923), establishing generalizability to different evaluation scenarios, with notable performance in critical findings such as small bowel obstruction (AUC 0.958) and acute pancreatitis (AUC 0.961). Subgroup analysis shows consistent accuracy across patient sex, age groups, and varied imaging protocols, including different slice thicknesses and contrast administration types. Comparison of high-confidence model outputs to radiologist reports reveals instances where a2z-1 identified overlooked findings, suggesting potential for quality assurance applications.


ReXplain: Translating Radiology into Patient-Friendly Video Reports

arXiv.org Artificial Intelligence

Radiology reports, designed for efficient communication between medical experts, often remain incomprehensible to patients. This inaccessibility could potentially lead to anxiety, decreased engagement in treatment decisions, and poorer health outcomes, undermining patient-centered care. We present ReXplain (Radiology eXplanation), an innovative AI-driven system that translates radiology findings into patient-friendly video reports. ReXplain uniquely integrates a large language model for medical text simplification and text-anatomy association, an image segmentation model for anatomical region identification, and an avatar generation tool for engaging interface visualization. ReXplain enables producing comprehensive explanations with plain language, highlighted imagery, and 3D organ renderings in the form of video reports. To evaluate the utility of ReXplain-generated explanations, we conducted two rounds of user feedback collection from six board-certified radiologists. The results of this proof-of-concept study indicate that ReXplain could accurately deliver radiological information and effectively simulate one-on-one consultation, shedding light on enhancing patient-centered radiology with potential clinical usage. This work demonstrates a new paradigm in AI-assisted medical communication, potentially improving patient engagement and satisfaction in radiology care, and opens new avenues for research in multimodal medical communication.


The Impact of AI Assistance on Radiology Reporting: A Pilot Study Using Simulated AI Draft Reports

arXiv.org Artificial Intelligence

Radiologists face increasing workload pressures amid growing imaging volumes, creating risks of burnout and delayed reporting times. While artificial intelligence (AI) based automated radiology report generation shows promise for reporting workflow optimization, evidence of its real-world impact on clinical accuracy and efficiency remains limited. This study evaluated the effect of draft reports on radiology reporting workflows by conducting a three reader multi-case study comparing standard versus AI-assisted reporting workflows. In both workflows, radiologists reviewed the cases and modified either a standard template (standard workflow) or an AI-generated draft report (AI-assisted workflow) to create the final report. For controlled evaluation, we used GPT-4 to generate simulated AI drafts and deliberately introduced 1-3 errors in half the cases to mimic real AI system performance. The AI-assisted workflow significantly reduced average reporting time from 573 to 435 seconds (p=0.003), without a statistically significant difference in clinically significant errors between workflows. These findings suggest that AI-generated drafts can meaningfully accelerate radiology reporting while maintaining diagnostic accuracy, offering a practical solution to address mounting workload challenges in clinical practice.


A Perspective for Adapting Generalist AI to Specialized Medical AI Applications and Their Challenges

arXiv.org Artificial Intelligence

The integration of Large Language Models (LLMs) into medical applications has sparked widespread interest across the healthcare industry, from drug discovery and development to clinical decision support, assisting telemedicine, medical devices, and healthcare insurance applications. This perspective paper aims to discuss the inner workings of building LLM-powered medical AI applications and introduces a comprehensive framework for their development. We review existing literature and outline the unique challenges of applying LLMs in specialized medical contexts. Additionally, we introduce a three-step framework to organize medical LLM research activities: 1) Modeling: breaking down complex medical workflows into manageable steps for developing medical-specific models; 2) Optimization: optimizing the model performance with crafted prompts and integrating external knowledge and tools, and 3) System engineering: decomposing complex tasks into subtasks and leveraging human expertise for building medical AI applications. Furthermore, we offer a detailed use case playbook that describes various LLM-powered medical AI applications, such as optimizing clinical trial design, enhancing clinical decision support, and advancing medical imaging analysis. Finally, we discuss various challenges and considerations for building medical AI applications with LLMs, such as handling hallucination issues, data ownership and compliance, privacy, intellectual property considerations, compute cost, sustainability issues, and responsible AI requirements.


ReXrank: A Public Leaderboard for AI-Powered Radiology Report Generation

arXiv.org Artificial Intelligence

AI-driven models have demonstrated significant potential in automating radiology report generation for chest X-rays. However, there is no standardized benchmark for objectively evaluating their performance. To address this, we present ReXrank, https://rexrank.ai, a public leaderboard and challenge for assessing AI-powered radiology report generation. Our framework incorporates ReXGradient, the largest test dataset consisting of 10,000 studies, and three public datasets (MIMIC-CXR, IU-Xray, CheXpert Plus) for report generation assessment. ReXrank employs 8 evaluation metrics and separately assesses models capable of generating only findings sections and those providing both findings and impressions sections. By providing this standardized evaluation framework, ReXrank enables meaningful comparisons of model performance and offers crucial insights into their robustness across diverse clinical settings. Beyond its current focus on chest X-rays, ReXrank's framework sets the stage for comprehensive evaluation of automated reporting across the full spectrum of medical imaging.


RadFlag: A Black-Box Hallucination Detection Method for Medical Vision Language Models

arXiv.org Artificial Intelligence

Generating accurate radiology reports from medical images is a clinically important but challenging task. While current Vision Language Models (VLMs) show promise, they are prone to generating hallucinations, potentially compromising patient care. We introduce RadFlag, a black-box method to enhance the accuracy of radiology report generation. Our method uses a sampling-based flagging technique to find hallucinatory generations that should be removed. We first sample multiple reports at varying temperatures and then use a Large Language Model (LLM) to identify claims that are not consistently supported across samples, indicating that the model has low confidence in those claims. Using a calibrated threshold, we flag a fraction of these claims as likely hallucinations, which should undergo extra review or be automatically rejected. Our method achieves high precision when identifying both individual hallucinatory sentences and reports that contain hallucinations. As an easy-to-use, black-box system that only requires access to a model's temperature parameter, RadFlag is compatible with a wide range of radiology report generation models and has the potential to broadly improve the quality of automated radiology reporting.


HeadCT-ONE: Enabling Granular and Controllable Automated Evaluation of Head CT Radiology Report Generation

arXiv.org Artificial Intelligence

We present Head CT Ontology Normalized Evaluation (HeadCT-ONE), a metric for evaluating head CT report generation through ontology-normalized entity and relation extraction. HeadCT-ONE enhances current information extraction derived metrics (such as RadGraph F1) by implementing entity normalization through domain-specific ontologies, addressing radiological language variability. HeadCT-ONE compares normalized entities and relations, allowing for controllable weighting of different entity types or specific entities. Through experiments on head CT reports from three health systems, we show that HeadCT-ONE's normalization and weighting approach improves the capture of semantically equivalent reports, better distinguishes between normal and abnormal reports, and aligns with radiologists' assessment of clinically significant errors, while offering flexibility to prioritize specific aspects of report content. Our results demonstrate how HeadCT-ONE enables more flexible, controllable, and granular automated evaluation of head CT reports.


Direct Preference Optimization for Suppressing Hallucinated Prior Exams in Radiology Report Generation

arXiv.org Artificial Intelligence

Recent advances in generative vision-language models (VLMs) have exciting potential implications for AI in radiology, yet VLMs are also known to produce hallucinations, nonsensical text, and other unwanted behaviors that can waste clinicians' time and cause patient harm. Drawing on recent work on direct preference optimization (DPO), we propose a simple method for modifying the behavior of pretrained VLMs performing radiology report generation by suppressing unwanted types of generations. We apply our method to the prevention of hallucinations of prior exams, addressing a long-established problem behavior in models performing chest X-ray report generation. Across our experiments, we find that DPO fine-tuning achieves a 3.2-4.8x reduction in lines hallucinating prior exams while maintaining model performance on clinical accuracy metrics. Our work is, to the best of our knowledge, the first work to apply DPO to medical VLMs, providing a data- and compute- efficient way to suppress problem behaviors while maintaining overall clinical accuracy.