Goto

Collaborating Authors

 Rahmani, Amir


Personalized Causal Graph Reasoning for LLMs: A Case Study on Dietary Recommendations

arXiv.org Artificial Intelligence

Large Language Models (LLMs) effectively leverage common-sense knowledge for general reasoning, yet they struggle with personalized reasoning when tasked with interpreting multifactor personal data. This limitation restricts their applicability in domains that require context-aware decision-making tailored to individuals. This paper introduces Personalized Causal Graph Reasoning as an agentic framework that enhances LLM reasoning by incorporating personal causal graphs derived from data of individuals. These graphs provide a foundation that guides the LLM's reasoning process. We evaluate it on a case study on nutrient-oriented dietary recommendations, which requires personal reasoning due to the implicit unique dietary effects. We propose a counterfactual evaluation to estimate the efficiency of LLM-recommended foods for glucose management. Results demonstrate that the proposed method efficiently provides personalized dietary recommendations to reduce average glucose iAUC across three time windows, which outperforms the previous approach. LLM-as-a-judge evaluation results indicate that our proposed method enhances personalization in the reasoning process.


CaRT: Certified Safety and Robust Tracking in Learning-based Motion Planning for Multi-Agent Systems

arXiv.org Artificial Intelligence

The key innovation of our analytical method, CaRT, lies in establishing a new hierarchical, distributed architecture to guarantee the safety and robustness of a given learning-based motion planning policy. First, in a nominal setting, the analytical form of our CaRT safety filter formally ensures safe maneuvers of nonlinear multi-agent systems, optimally with minimal deviation from the learning-based policy. Second, in off-nominal settings, the analytical form of our CaRT robust filter optimally tracks the certified safe trajectory, generated by the previous layer in the hierarchy, the CaRT safety filter. We show using contraction theory that CaRT guarantees safety and the exponential boundedness of the trajectory tracking error, even under the presence of deterministic and stochastic disturbance. Also, the hierarchical nature of CaRT enables enhancing its robustness for safety just by its superior tracking to the certified safe trajectory, thereby making it suitable for off-nominal scenarios with large disturbances. This is a major distinction from conventional safety function-driven approaches, where the robustness originates from the stability of a safe set, which could pull the system over-conservatively to the interior of the safe set. Our log-barrier formulation in CaRT allows for its distributed implementation in multi-agent settings. We demonstrate the effectiveness of CaRT in several examples of nonlinear motion planning and control problems, including optimal, multi-spacecraft reconfiguration.


Controlling the Latent Space of GANs through Reinforcement Learning: A Case Study on Task-based Image-to-Image Translation

arXiv.org Artificial Intelligence

Generative Adversarial Networks (GAN) have emerged as a formidable AI tool to generate realistic outputs based on training datasets. However, the challenge of exerting control over the generation process of GANs remains a significant hurdle. In this paper, we propose a novel methodology to address this issue by integrating a reinforcement learning (RL) agent with a latent-space GAN (l-GAN), thereby facilitating the generation of desired outputs. More specifically, we have developed an actor-critic RL agent with a meticulously designed reward policy, enabling it to acquire proficiency in navigating the latent space of the l-GAN and generating outputs based on specified tasks. To substantiate the efficacy of our approach, we have conducted a series of experiments employing the MNIST dataset, including arithmetic addition as an illustrative task. The outcomes of these experiments serve to validate our methodology. Our pioneering integration of an RL agent with a GAN model represents a novel advancement, holding great potential for enhancing generative networks in the future.


Active Reinforcement Learning for Personalized Stress Monitoring in Everyday Settings

arXiv.org Artificial Intelligence

Most existing sensor-based monitoring frameworks presume that a large available labeled dataset is processed to train accurate detection models. However, in settings where personalization is necessary at deployment time to fine-tune the model, a person-specific dataset needs to be collected online by interacting with the users. Optimizing the collection of labels in such phase is instrumental to impose a tolerable burden on the users while maximizing personal improvement. In this paper, we consider a fine-grain stress detection problem based on wearable sensors targeting everyday settings, and propose a novel context-aware active learning strategy capable of jointly maximizing the meaningfulness of the signal samples we request the user to label and the response rate. We develop a multilayered sensor-edge-cloud platform to periodically capture physiological signals and process them in real-time, as well as to collect labels and retrain the detection model. We collect a large dataset and show that the context-aware active learning technique we propose achieves a desirable detection performance using 88\% and 32\% fewer queries from users compared to a randomized strategy and a traditional active learning strategy, respectively.


Multi-Agent Motion Planning using Deep Learning for Space Applications

arXiv.org Artificial Intelligence

State-of-the-art motion planners cannot scale to a large number of systems. Motion planning for multiple agents is an NP (non-deterministic polynomial-time) hard problem, so the computation time increases exponentially with each addition of agents. This computational demand is a major stumbling block to the motion planner's application to future NASA missions involving the swarm of space vehicles. We applied a deep neural network to transform computationally demanding mathematical motion planning problems into deep learning-based numerical problems. We showed optimal motion trajectories can be accurately replicated using deep learning-based numerical models in several 2D and 3D systems with multiple agents. The deep learning-based numerical model demonstrates superior computational efficiency with plans generated 1000 times faster than the mathematical model counterpart.