Goto

Collaborating Authors

Pujara, Jay


Retrieving Complex Tables with Multi-Granular Graph Representation Learning

arXiv.org Artificial Intelligence

The task of natural language table retrieval (NLTR) seeks to retrieve semantically relevant tables based on natural language queries. Existing learning systems for this task often treat tables as plain text based on the assumption that tables are structured as dataframes. However, tables can have complex layouts which indicate diverse dependencies between subtable structures, such as nested headers. As a result, queries may refer to different spans of relevant content that is distributed across these structures. Moreover, such systems fail to generalize to novel scenarios beyond those seen in the training set. Prior methods are still distant from a generalizable solution to the NLTR problem, as they fall short in handling complex table layouts or queries over multiple granularities. To address these issues, we propose Graph-based Table Retrieval (GTR), a generalizable NLTR framework with multi-granular graph representation learning. In our framework, a table is first converted into a tabular graph, with cell nodes, row nodes and column nodes to capture content at different granularities. Then the tabular graph is input to a Graph Transformer model that can capture both table cell content and the layout structures. To enhance the robustness and generalizability of the model, we further incorporate a self-supervised pre-training task based on graph-context matching. Experimental results on two benchmarks show that our method leads to significant improvements over the current state-of-the-art systems. Further experiments demonstrate promising performance of our method on cross-dataset generalization, and enhanced capability of handling complex tables and fulfilling diverse query intents. Code and data are available at https://github.com/FeiWang96/GTR.


Representing Numbers in NLP: a Survey and a Vision

arXiv.org Artificial Intelligence

NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a comprehensive taxonomy of tasks and methods. We break down the subjective notion of numeracy into 7 subtasks, arranged along two dimensions: granularity (exact vs approximate) and units (abstract vs grounded). We analyze the myriad representational choices made by 18 previously published number encoders and decoders. We synthesize best practices for representing numbers in text and articulate a vision for holistic numeracy in NLP, comprised of design trade-offs and a unified evaluation.


RICA: Evaluating Robust Inference Capabilities Based on Commonsense Axioms

arXiv.org Artificial Intelligence

Pre-trained language models (PTLM) have impressive performance on commonsense inference benchmarks, but their ability to practically employ commonsense to communicate with humans is fiercely debated. Prior evaluations of PTLMs have focused on factual world knowledge or the ability to reason when the necessary knowledge is provided explicitly. However, effective communication with humans requires inferences based on implicit commonsense relationships, and robustness despite paraphrasing. In the pursuit of advancing fluid human-AI communication, we propose a new challenge, RICA, that evaluates the capabilities of making commonsense inferences and the robustness of these inferences to language variations. In our work, we develop a systematic procedure to probe PTLMs across three different evaluation settings. Extensive experiments on our generated probe sets show that PTLMs perform no better than random guessing (even with fine-tuning), are heavily impacted by statistical biases, and are not robust to perturbation attacks. Our framework and probe sets can help future work improve PTLMs' inference abilities and robustness to linguistic variations--bringing us closer to more fluid communication.


Human-like Time Series Summaries via Trend Utility Estimation

arXiv.org Machine Learning

In many scenarios, humans prefer a text-based representation of quantitative data over numerical, tabular, or graphical representations. The attractiveness of textual summaries for complex data has inspired research on data-to-text systems. While there are several data-to-text tools for time series, few of them try to mimic how humans summarize for time series. In this paper, we propose a model to create human-like text descriptions for time series. Our system finds patterns in time series data and ranks these patterns based on empirical observations of human behavior using utility estimation. Our proposed utility estimation model is a Bayesian network capturing interdependencies between different patterns. We describe the learning steps for this network and introduce baselines along with their performance for each step. The output of our system is a natural language description of time series that attempts to match a human's summary of the same data.


Using Semantics and Statistics to Turn Data into Knowledge

AI Magazine

Many information extraction and knowledge base construction systems are addressing the challenge of deriving knowledge from text. In this article, we represent the desired knowledge base as a knowledge graph and introduce the problem of knowledge graph identification, collectively resolving the entities, labels, and relations present in the knowledge graph. Knowledge graph identification requires reasoning jointly over millions of extractions simultaneously, posing a scalability challenge to many approaches. We use probabilistic soft logic (PSL), a recently-introduced statistical relational learning framework, to implement an efficient solution to knowledge graph identification and present state-of-the-art results for knowledge graph construction while performing an order of magnitude faster than competing methods.


Using Semantics and Statistics to Turn Data into Knowledge

AI Magazine

Many information extraction and knowledge base construction systems are addressing the challenge of deriving knowledge from text. A key problem in constructing these knowledge bases from sources like the web is overcoming the erroneous and incomplete information found in millions of candidate extractions. To solve this problem, we turn to semantics — using ontological constraints between candidate facts to eliminate errors. In this article, we represent the desired knowledge base as a knowledge graph and introduce the problem of knowledge graph identification, collectively resolving the entities, labels, and relations present in the knowledge graph. Knowledge graph identification requires reasoning jointly over millions of extractions simultaneously, posing a scalability challenge to many approaches. We use probabilistic soft logic (PSL), a recently-introduced statistical relational learning framework, to implement an efficient solution to knowledge graph identification and present state-of-the-art results for knowledge graph construction while performing an order of magnitude faster than competing methods.