Not enough data to create a plot.
Try a different view from the menu above.
Posner, Ingmar
DreamUp3D: Object-Centric Generative Models for Single-View 3D Scene Understanding and Real-to-Sim Transfer
Wu, Yizhe, Borde, Haitz Sáez de Ocáriz, Collins, Jack, Jones, Oiwi Parker, Posner, Ingmar
3D scene understanding for robotic applications exhibits a unique set of requirements including real-time inference, object-centric latent representation learning, accurate 6D pose estimation and 3D reconstruction of objects. Current methods for scene understanding typically rely on a combination of trained models paired with either an explicit or learnt volumetric representation, all of which have their own drawbacks and limitations. We introduce DreamUp3D, a novel Object-Centric Generative Model (OCGM) designed explicitly to perform inference on a 3D scene informed only by a single RGB-D image. DreamUp3D is a self-supervised model, trained end-to-end, and is capable of segmenting objects, providing 3D object reconstructions, generating object-centric latent representations and accurate per-object 6D pose estimates. We compare DreamUp3D to baselines including NeRFs, pre-trained CLIP-features, ObSurf, and ObPose, in a range of tasks including 3D scene reconstruction, object matching and object pose estimation. Our experiments show that our model outperforms all baselines by a significant margin in real-world scenarios displaying its applicability for 3D scene understanding tasks while meeting the strict demands exhibited in robotics applications.
World Models via Policy-Guided Trajectory Diffusion
Rigter, Marc, Yamada, Jun, Posner, Ingmar
World models are a powerful tool for developing intelligent agents. By predicting the outcome of a sequence of actions, world models enable policies to be optimised via on-policy reinforcement learning (RL) using synthetic data, i.e. in "in imagination". Existing world models are autoregressive in that they interleave predicting the next state with sampling the next action from the policy. Prediction error inevitably compounds as the trajectory length grows. In this work, we propose a novel world modelling approach that is not autoregressive and generates entire on-policy trajectories in a single pass through a diffusion model. Our approach, Policy-Guided Trajectory Diffusion (PolyGRAD), leverages a denoising model in addition to the gradient of the action distribution of the policy to diffuse a trajectory of initially random states and actions into an on-policy synthetic trajectory. We analyse the connections between PolyGRAD, score-based generative models, and classifier-guided diffusion models. Our results demonstrate that PolyGRAD outperforms state-of-the-art baselines in terms of trajectory prediction error for moderate-length trajectories, with the exception of autoregressive diffusion. At short horizons, PolyGRAD obtains comparable errors to autoregressive diffusion, but with significantly lower computational requirements. Our experiments also demonstrate that PolyGRAD enables performant policies to be trained via on-policy RL in imagination for MuJoCo continuous control domains. Thus, PolyGRAD introduces a new paradigm for scalable and non-autoregressive on-policy world modelling.
RAMP: A Benchmark for Evaluating Robotic Assembly Manipulation and Planning
Collins, Jack, Robson, Mark, Yamada, Jun, Sridharan, Mohan, Janik, Karol, Posner, Ingmar
We introduce RAMP, an open-source robotics benchmark inspired by real-world industrial assembly tasks. RAMP consists of beams that a robot must assemble into specified goal configurations using pegs as fasteners. As such, it assesses planning and execution capabilities, and poses challenges in perception, reasoning, manipulation, diagnostics, fault recovery, and goal parsing. RAMP has been designed to be accessible and extensible. Parts are either 3D printed or otherwise constructed from materials that are readily obtainable. The design of parts and detailed instructions are publicly available. In order to broaden community engagement, RAMP incorporates fixtures such as April Tags which enable researchers to focus on individual sub-tasks of the assembly challenge if desired. We provide a full digital twin as well as rudimentary baselines to enable rapid progress. Our vision is for RAMP to form the substrate for a community-driven endeavour that evolves as capability matures.
TWIST: Teacher-Student World Model Distillation for Efficient Sim-to-Real Transfer
Yamada, Jun, Rigter, Marc, Collins, Jack, Posner, Ingmar
Model-based RL is a promising approach for real-world robotics due to its improved sample efficiency and generalization capabilities compared to model-free RL. However, effective model-based RL solutions for vision-based real-world applications require bridging the sim-to-real gap for any world model learnt. Due to its significant computational cost, standard domain randomisation does not provide an effective solution to this problem. This paper proposes TWIST (Teacher-Student World Model Distillation for Sim-to-Real Transfer) to achieve efficient sim-to-real transfer of vision-based model-based RL using distillation. Specifically, TWIST leverages state observations as readily accessible, privileged information commonly garnered from a simulator to significantly accelerate sim-to-real transfer. Specifically, a teacher world model is trained efficiently on state information. At the same time, a matching dataset is collected of domain-randomised image observations. The teacher world model then supervises a student world model that takes the domain-randomised image observations as input. By distilling the learned latent dynamics model from the teacher to the student model, TWIST achieves efficient and effective sim-to-real transfer for vision-based model-based RL tasks. Experiments in simulated and real robotics tasks demonstrate that our approach outperforms naive domain randomisation and model-free methods in terms of sample efficiency and task performance of sim-to-real transfer.
Neural Latent Geometry Search: Product Manifold Inference via Gromov-Hausdorff-Informed Bayesian Optimization
Borde, Haitz Saez de Ocariz, Arroyo, Alvaro, Morales, Ismael, Posner, Ingmar, Dong, Xiaowen
Recent research indicates that the performance of machine learning models can be improved by aligning the geometry of the latent space with the underlying data structure. Rather than relying solely on Euclidean space, researchers have proposed using hyperbolic and spherical spaces with constant curvature, or combinations thereof, to better model the latent space and enhance model performance. However, little attention has been given to the problem of automatically identifying the optimal latent geometry for the downstream task. We mathematically define this novel formulation and coin it as neural latent geometry search (NLGS). More specifically, we introduce an initial attempt to search for a latent geometry composed of a product of constant curvature model spaces with a small number of query evaluations, under some simplifying assumptions. To accomplish this, we propose a novel notion of distance between candidate latent geometries based on the Gromov-Hausdorff distance from metric geometry. In order to compute the Gromov-Hausdorff distance, we introduce a mapping function that enables the comparison of different manifolds by embedding them in a common high-dimensional ambient space. We then design a graph search space based on the notion of smoothness between latent geometries and employ the calculated distances as an additional inductive bias. Finally, we use Bayesian optimization to search for the optimal latent geometry in a query-efficient manner. This is a general method which can be applied to search for the optimal latent geometry for a variety of models and downstream tasks. We perform experiments on synthetic and real-world datasets to identify the optimal latent geometry for multiple machine learning problems.
Gromov-Hausdorff Distances for Comparing Product Manifolds of Model Spaces
Borde, Haitz Saez de Ocariz, Arroyo, Alvaro, Morales, Ismael, Posner, Ingmar, Dong, Xiaowen
Recent studies propose enhancing machine learning models by aligning the geometric characteristics of the latent space with the underlying data structure. Instead of relying solely on Euclidean space, researchers have suggested using hyperbolic and spherical spaces with constant curvature, or their combinations (known as product manifolds), to improve model performance. However, there exists no principled technique to determine the best latent product manifold signature, which refers to the choice and dimensionality of manifold components. To address this, we introduce a novel notion of distance between candidate latent geometries using the Gromov-Hausdorff distance from metric geometry. We propose using a graph search space that uses the estimated Gromov-Hausdorff distances to search for the optimal latent geometry. In this work we focus on providing a description of an algorithm to compute the Gromov-Hausdorff distance between model spaces and its computational implementation.
VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait Representation
Mitchell, Alexander L., Merkt, Wolfgang, Geisert, Mathieu, Gangapurwala, Siddhant, Engelcke, Martin, Jones, Oiwi Parker, Havoutis, Ioannis, Posner, Ingmar
Abstract--Quadruped locomotion is rapidly maturing to a degree where robots are able to realise highly dynamic manoeuvres. However, current planners are unable to vary key gait parameters of the in-swing feet midair. In this work we address this limitation and show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait. This is achieved via a generative model trained on a single trot style, which encourages disentanglement such that application of a drive signal to a single dimension of the latent state induces holistic plans synthesising a continuous variety of trot styles. We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, footstep height and full stance duration. Due to the nature of our approach these synthesised gaits are continuously variable online during robot operation. The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework. We evaluate our approach on two versions of the real ANYmal quadruped robots and demonstrate that our method achieves a continuous blend of dynamic trot styles whilst being robust and reactive to external perturbations. Figure 1: Using a variational auto-encoder (VAE), our approach learns a structured latent space capturing key stance phases constituting a particular gait. The space is disentangled to I. I This approach by advances in optimisation-based [1]-[5] and reinforcement allows for precise base twist control and readily transfers from learning-based methods [6]-[8], quadrupeds are now able to ANYmal B to ANYmal C, a dynamically dissimilar robot, robustly plan and perform dynamic manoeuvres, making them without retraining. Additionally, we measure disturbances as an increasingly popular and reliable choice for tasks such out of distribution seen during training and adjust cadence as as inspection, monitoring, search and rescue or goods delivery a rudimentary, but effective response. However, despite recent advances, important limitations remain. Due to the complexity of the system, models used for gait planning and control are often overly contact schedules [1], [9]. Mathieu Geisert is with Agility Robotics, U.S.A. Work done while at Martin Engelcke is with DeepMind Technologies Ltd., London, U.K. Work done while at Oxford. Personal use of this material is permitted. These are often characterise and react to external perturbations. A large impulse computationally expensive [3], [4] meaning that varying the applied to the robot's base triggers a spike in the gait parameters is not achievable in real time. A limitation Evidence Lower Bound (ELBO) which clearly identifies the of all these methods is that they are unable to adjust key disturbance as out of the distribution seen during training.
Reward-Free Curricula for Training Robust World Models
Rigter, Marc, Jiang, Minqi, Posner, Ingmar
There has been a recent surge of interest in developing generally-capable agents that can adapt to new tasks without additional training in the environment. Learning world models from reward-free exploration is a promising approach, and enables policies to be trained using imagined experience for new tasks. Achieving a general agent requires robustness across different environments. However, different environments may require different amounts of data to learn a suitable world model. In this work, we address the problem of efficiently learning robust world models in the reward-free setting. As a measure of robustness, we consider the minimax regret objective. We show that the minimax regret objective can be connected to minimising the maximum error in the world model across environments. This informs our algorithm, WAKER: Weighted Acquisition of Knowledge across Environments for Robustness. WAKER selects environments for data collection based on the estimated error of the world model for each environment. Our experiments demonstrate that WAKER outperforms naive domain randomisation, resulting in improved robustness, efficiency, and generalisation.
ObPose: Leveraging Pose for Object-Centric Scene Inference and Generation in 3D
Wu, Yizhe, Jones, Oiwi Parker, Posner, Ingmar
We present ObPose, an unsupervised object-centric inference and generation model which learns 3D-structured latent representations from RGB-D scenes. Inspired by prior art in 2D representation learning, ObPose considers a factorised latent space, separately encoding object location (where) and appearance (what). ObPose further leverages an object's pose (i.e. location and orientation), defined via a minimum volume principle, as a novel inductive bias for learning the where component. To achieve this, we propose an efficient, voxelised approximation approach to recover the object shape directly from a neural radiance field (NeRF). As a consequence, ObPose models each scene as a composition of NeRFs, richly representing individual objects. To evaluate the quality of the learned representations, ObPose is evaluated quantitatively on the YCB, MultiShapeNet, and CLEVR datatasets for unsupervised scene segmentation, outperforming the current state-of-the-art in 3D scene inference (ObSuRF) by a significant margin. Generative results provide qualitative demonstration that the same ObPose model can both generate novel scenes and flexibly edit the objects in them. These capacities again reflect the quality of the learned latents and the benefits of disentangling the where and what components of a scene. Key design choices made in the ObPose encoder are validated with ablations.
You Only Look at One: Category-Level Object Representations for Pose Estimation From a Single Example
Goodwin, Walter, Havoutis, Ioannis, Posner, Ingmar
In order to meaningfully interact with the world, robot manipulators must be able to interpret objects they encounter. A critical aspect of this interpretation is pose estimation: inferring quantities that describe the position and orientation of an object in 3D space. Most existing approaches to pose estimation make limiting assumptions, often working only for specific, known object instances, or at best generalising to an object category using large pose-labelled datasets. In this work, we present a method for achieving category-level pose estimation by inspection of just a single object from a desired category. We show that we can subsequently perform accurate pose estimation for unseen objects from an inspected category, and considerably outperform prior work by exploiting multi-view correspondences. We demonstrate that our method runs in real-time, enabling a robot manipulator equipped with an RGBD sensor to perform online 6D pose estimation for novel objects. Finally, we showcase our method in a continual learning setting, with a robot able to determine whether objects belong to known categories, and if not, use active perception to produce a one-shot category representation for subsequent pose estimation.