Goto

Collaborating Authors

 Polyanskiy, Yury


On the Minimax Regret of Sequential Probability Assignment via Square-Root Entropy

arXiv.org Machine Learning

We study the problem of sequential probability assignment under logarithmic loss, both with and without side information. Our objective is to analyze the minimax regret -- a notion extensively studied in the literature -- in terms of geometric quantities, such as covering numbers and scale-sensitive dimensions. We show that the minimax regret for the case of no side information (equivalently, the Shtarkov sum) can be upper bounded in terms of sequential square-root entropy, a notion closely related to Hellinger distance. For the problem of sequential probability assignment with side information, we develop both upper and lower bounds based on the aforementioned entropy. The lower bound matches the upper bound, up to log factors, for classes in the Donsker regime (according to our definition of entropy).


NestQuant: Nested Lattice Quantization for Matrix Products and LLMs

arXiv.org Artificial Intelligence

Post-training quantization (PTQ) has emerged as a critical technique for efficient deployment of large language models (LLMs). This work proposes NestQuant, a novel PTQ scheme for weights and activations that is based on self-similar nested lattices. Recent work have mathematically shown such quantizers to be information-theoretically optimal for low-precision matrix multiplication. We implement a practical low-complexity version of NestQuant based on Gosset lattice, making it a drop-in quantizer for any matrix multiplication step (e.g., in self-attention, MLP etc). For example, NestQuant quantizes weights, KV-cache, and activations of Llama-3-8B to 4 bits, achieving perplexity of 6.6 on wikitext2. This represents more than 55% reduction in perplexity gap with respect to unquantized model (perplexity of 6.14) compared to state-of-the-art Meta's SpinQuant (perplexity 7.3). Comparisons on various LLM evaluation benchmarks also show a reduction in performance degradation induced by quantization.


Solving Empirical Bayes via Transformers

arXiv.org Machine Learning

This work applies modern AI tools (transformers) to solving one of the oldest statistical problems: Poisson means under empirical Bayes (Poisson-EB) setting. In Poisson-EB a high-dimensional mean vector $\theta$ (with iid coordinates sampled from an unknown prior $\pi$) is estimated on the basis of $X=\mathrm{Poisson}(\theta)$. A transformer model is pre-trained on a set of synthetically generated pairs $(X,\theta)$ and learns to do in-context learning (ICL) by adapting to unknown $\pi$. Theoretically, we show that a sufficiently wide transformer can achieve vanishing regret with respect to an oracle estimator who knows $\pi$ as dimension grows to infinity. Practically, we discover that already very small models (100k parameters) are able to outperform the best classical algorithm (non-parametric maximum likelihood, or NPMLE) both in runtime and validation loss, which we compute on out-of-distribution synthetic data as well as real-world datasets (NHL hockey, MLB baseball, BookCorpusOpen). Finally, by using linear probes, we confirm that the transformer's EB estimator appears to internally work differently from either NPMLE or Robbins' estimators.


Residual connections provably mitigate oversmoothing in graph neural networks

arXiv.org Machine Learning

Graph neural networks (GNNs) have achieved remarkable empirical success in processing and representing graph-structured data across various domains. However, a significant challenge known as "oversmoothing" persists, where vertex features become nearly indistinguishable in deep GNNs, severely restricting their expressive power and practical utility. In this work, we analyze the asymptotic oversmoothing rates of deep GNNs with and without residual connections by deriving explicit convergence rates for a normalized vertex similarity measure. Our analytical framework is grounded in the multiplicative ergodic theorem. Furthermore, we demonstrate that adding residual connections effectively mitigates or prevents oversmoothing across several broad families of parameter distributions. The theoretical findings are strongly supported by numerical experiments.


Clustering in Causal Attention Masking

arXiv.org Artificial Intelligence

This work presents a modification of the self-attention dynamics proposed by Geshkovski et al. (arXiv:2312.10794) to better reflect the practically relevant, causally masked attention used in transformer architectures for generative AI. This modification translates into an interacting particle system that cannot be interpreted as a mean-field gradient flow. Despite this loss of structure, we significantly strengthen the results of Geshkovski et al. (arXiv:2312.10794) in this context: While previous rigorous results focused on cases where all three matrices (Key, Query, and Value) were scaled identities, we prove asymptotic convergence to a single cluster for arbitrary key-query matrices and a value matrix equal to the identity. Additionally, we establish a connection to the classical R\'enyi parking problem from combinatorial geometry to make initial theoretical steps towards demonstrating the existence of meta-stable states.


Optimal Quantization for Matrix Multiplication

arXiv.org Artificial Intelligence

Recent work in machine learning community proposed multiple methods for performing lossy compression (quantization) of large matrices. This quantization is important for accelerating matrix multiplication (main component of large language models), which is often bottlenecked by the speed of loading these matrices from memory. Unlike classical vector quantization and rate-distortion theory, the goal of these new compression algorithms is to be able to approximate not the matrices themselves, but their matrix product. Specifically, given a pair of real matrices $A,B$ an encoder (compressor) is applied to each of them independently producing descriptions with $R$ bits per entry. These representations subsequently are used by the decoder to estimate matrix product $A^\top B$. In this work, we provide a non-asymptotic lower bound on the mean squared error of this approximation (as a function of rate $R$) for the case of matrices $A,B$ with iid Gaussian entries. Algorithmically, we construct a universal quantizer based on nested lattices with an explicit guarantee of approximation error for any (non-random) pair of matrices $A$, $B$ in terms of only Frobenius norms $\|A\|_F, \|B\|_F$ and $\|A^\top B\|_F$. For iid Gaussian matrices our quantizer achieves the lower bound and is, thus, asymptotically optimal. A practical low-complexity version of our quantizer achieves performance quite close to optimal. In information-theoretic terms we derive rate-distortion function for matrix multiplication of iid Gaussian matrices.


Dynamic metastability in the self-attention model

arXiv.org Artificial Intelligence

We consider the self-attention model - an interacting particle system on the unit sphere, which serves as a toy model for Transformers, the deep neural network architecture behind the recent successes of large language models. We prove the appearance of dynamic metastability conjectured in [GLPR23] - although particles collapse to a single cluster in infinite time, they remain trapped near a configuration of several clusters for an exponentially long period of time. By leveraging a gradient flow interpretation of the system, we also connect our result to an overarching framework of slow motion of gradient flows proposed by Otto and Reznikoff [OR07] in the context of coarsening and the Allen-Cahn equation. We finally probe the dynamics beyond the exponentially long period of metastability, and illustrate that, under an appropriate time-rescaling, the energy reaches its global maximum in finite time and has a staircase profile, with trajectories manifesting saddle-to-saddle-like behavior, reminiscent of recent works in the analysis of training dynamics via gradient descent for two-layer neural networks.


A mathematical perspective on Transformers

arXiv.org Artificial Intelligence

Transformers play a central role in the inner workings of large language models. We develop a mathematical framework for analyzing Transformers based on their interpretation as interacting particle systems, which reveals that clusters emerge in long time. Our study explores the underlying theory and offers new perspectives for mathematicians as well as computer scientists.


Score-based Source Separation with Applications to Digital Communication Signals

arXiv.org Artificial Intelligence

We propose a new method for separating superimposed sources using diffusion-based generative models. Our method relies only on separately trained statistical priors of independent sources to establish a new objective function guided by maximum a posteriori estimation with an $\alpha$-posterior, across multiple levels of Gaussian smoothing. Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature and the recovery of encoded bits from a signal of interest, as measured by the bit error rate (BER). Experimental results with RF mixtures demonstrate that our method results in a BER reduction of 95% over classical and existing learning-based methods. Our analysis demonstrates that our proposed method yields solutions that asymptotically approach the modes of an underlying discrete distribution. Furthermore, our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme, shedding additional light on its use beyond conditional sampling. The project webpage is available at https://alpha-rgs.github.io


The emergence of clusters in self-attention dynamics

arXiv.org Machine Learning

Viewing Transformers as interacting particle systems, we describe the geometry of learned representations when the weights are not time dependent. We show that particles, representing tokens, tend to cluster toward particular limiting objects as time tends to infinity. Cluster locations are determined by the initial tokens, confirming context-awareness of representations learned by Transformers. Using techniques from dynamical systems and partial differential equations, we show that the type of limiting object that emerges depends on the spectrum of the value matrix. Additionally, in the one-dimensional case we prove that the self-attention matrix converges to a low-rank Boolean matrix. The combination of these results mathematically confirms the empirical observation made by Vaswani et al. [VSP'17] that leaders appear in a sequence of tokens when processed by Transformers.