Goto

Collaborating Authors

 Platt, Robert


Fourier Transporter: Bi-Equivariant Robotic Manipulation in 3D

arXiv.org Artificial Intelligence

Many complex robotic manipulation tasks can be decomposed as a sequence of pick and place actions. Training a robotic agent to learn this sequence over many different starting conditions typically requires many iterations or demonstrations, especially in 3D environments. In this work, we propose Fourier Transporter (\ours{}) which leverages the two-fold $\SE(d)\times\SE(d)$ symmetry in the pick-place problem to achieve much higher sample efficiency. \ours{} is an open-loop behavior cloning method trained using expert demonstrations to predict pick-place actions on new environments. \ours{} is constrained to incorporate symmetries of the pick and place actions independently. Our method utilizes a fiber space Fourier transformation that allows for memory-efficient construction. We test our proposed network on the RLbench benchmark and achieve state-of-the-art results across various tasks.


Leveraging Symmetries in Pick and Place

arXiv.org Artificial Intelligence

Robotic pick and place tasks are symmetric under translations and rotations of both the object to be picked and the desired place pose. For example, if the pick object is rotated or translated, then the optimal pick action should also rotate or translate. The same is true for the place pose; if the desired place pose changes, then the place action should also transform accordingly. A recently proposed pick and place framework known as Transporter Net captures some of these symmetries, but not all. This paper analytically studies the symmetries present in planar robotic pick and place and proposes a method of incorporating equivariant neural models into Transporter Net in a way that captures all symmetries. The new model, which we call Equivariant Transporter Net, is equivariant to both pick and place symmetries and can immediately generalize pick and place knowledge to different pick and place poses. We evaluate the new model empirically and show that it is much more sample efficient than the non-symmetric version, resulting in a system that can imitate demonstrated pick and place behavior using very few human demonstrations on a variety of imitation learning tasks.


One-shot Imitation Learning via Interaction Warping

arXiv.org Artificial Intelligence

Imitation learning of robot policies from few demonstrations is crucial in open-ended applications. We propose a new method, Interaction Warping, for learning SE(3) robotic manipulation policies from a single demonstration. We infer the 3D mesh of each object in the environment using shape warping, a technique for aligning point clouds across object instances. Then, we represent manipulation actions as keypoints on objects, which can be warped with the shape of the object. We show successful one-shot imitation learning on three simulated and real-world object re-arrangement tasks. We also demonstrate the ability of our method to predict object meshes and robot grasps in the wild.


A General Theory of Correct, Incorrect, and Extrinsic Equivariance

arXiv.org Machine Learning

Although equivariant machine learning has proven effective at many tasks, success depends heavily on the assumption that the ground truth function is symmetric over the entire domain matching the symmetry in an equivariant neural network. A missing piece in the equivariant learning literature is the analysis of equivariant networks when symmetry exists only partially in the domain. In this work, we present a general theory for such a situation. We propose pointwise definitions of correct, incorrect, and extrinsic equivariance, which allow us to quantify continuously the degree of each type of equivariance a function displays. We then study the impact of various degrees of incorrect or extrinsic symmetry on model error. We prove error lower bounds for invariant or equivariant networks in classification or regression settings with partially incorrect symmetry. We also analyze the potentially harmful effects of extrinsic equivariance.


On Robot Grasp Learning Using Equivariant Models

arXiv.org Artificial Intelligence

Real-world grasp detection is challenging due to the stochasticity in grasp dynamics and the noise in hardware. Ideally, the system would adapt to the real world by training directly on physical systems. However, this is generally difficult due to the large amount of training data required by most grasp learning models. In this paper, we note that the planar grasp function is $\SE(2)$-equivariant and demonstrate that this structure can be used to constrain the neural network used during learning. This creates an inductive bias that can significantly improve the sample efficiency of grasp learning and enable end-to-end training from scratch on a physical robot with as few as $600$ grasp attempts. We call this method Symmetric Grasp learning (SymGrasp) and show that it can learn to grasp ``from scratch'' in less that 1.5 hours of physical robot time.


The Surprising Effectiveness of Equivariant Models in Domains with Latent Symmetry

arXiv.org Artificial Intelligence

Extensive work has demonstrated that equivariant neural networks can significantly improve sample efficiency and generalization by enforcing an inductive bias in the network architecture. These applications typically assume that the domain symmetry is fully described by explicit transformations of the model inputs and outputs. However, many real-life applications contain only latent or partial symmetries which cannot be easily described by simple transformations of the input. In these cases, it is necessary to learn symmetry in the environment instead of imposing it mathematically on the network architecture. We discover, surprisingly, that imposing equivariance constraints that do not exactly match the domain symmetry is very helpful in learning the true symmetry in the environment. We differentiate between extrinsic and incorrect symmetry constraints and show that while imposing incorrect symmetry can impede the model's performance, imposing extrinsic symmetry can actually improve performance. We demonstrate that an equivariant model can significantly outperform non-equivariant methods on domains with latent symmetries both in supervised learning and in reinforcement learning for robotic manipulation and control problems.


Image to Icosahedral Projection for $\mathrm{SO}(3)$ Object Reasoning from Single-View Images

arXiv.org Artificial Intelligence

Reasoning about 3D objects based on 2D images is challenging due to variations in appearance caused by viewing the object from different orientations. Tasks such as object classification are invariant to 3D rotations and other such as pose estimation are equivariant. However, imposing equivariance as a model constraint is typically not possible with 2D image input because we do not have an a priori model of how the image changes under out-of-plane object rotations. The only $\mathrm{SO}(3)$-equivariant models that currently exist require point cloud or voxel input rather than 2D images. In this paper, we propose a novel architecture based on icosahedral group convolutions that reasons in $\mathrm{SO(3)}$ by learning a projection of the input image onto an icosahedron. The resulting model is approximately equivariant to rotation in $\mathrm{SO}(3)$. We apply this model to object pose estimation and shape classification tasks and find that it outperforms reasonable baselines. Project website: \url{https://dmklee.github.io/image2icosahedral}


Grasp Learning: Models, Methods, and Performance

arXiv.org Artificial Intelligence

Grasp learning has become an exciting and important topic in robotics. Just a few years ago, the problem of grasping novel objects from unstructured piles of clutter was considered a serious research challenge. Now, it is a capability that is quickly becoming incorporated into industrial supply chain automation. How did that happen? What is the current state of the art in robotic grasp learning, what are the different methodological approaches, and what machine learning models are used? This review attempts to give an overview of the current state of the art of grasp learning research.


Edge Grasp Network: A Graph-Based SE(3)-invariant Approach to Grasp Detection

arXiv.org Artificial Intelligence

Given point cloud input, the problem of 6-DoF grasp pose detection is to identify a set of hand poses in SE(3) from which an object can be successfully grasped. This important problem has many practical applications. Here we propose a novel method and neural network model that enables better grasp success rates relative to what is available in the literature. The method takes standard point cloud data as input and works well with single-view point clouds observed from arbitrary viewing directions.


SEIL: Simulation-augmented Equivariant Imitation Learning

arXiv.org Artificial Intelligence

Abstract-- In robotic manipulation, acquiring samples is extremely expensive because it often requires interacting with the real world. Traditional image-level data augmentation has shown the potential to improve sample efficiency in various machine learning tasks. However, image-level data augmentation is insufficient for an imitation learning agent to learn good manipulation policies in a reasonable amount of demonstrations. We propose Simulation-augmented Equivariant Imitation Learning (SEIL), a method that combines a novel data augmentation strategy of supplementing expert trajectories with simulated transitions and an equivariant model that exploits the O(2) symmetry in robotic manipulation. Experimental evaluations demonstrate that our method can learn non-trivial manipulation tasks within ten demonstrations and outperforms the baselines with a significant margin.