Goto

Collaborating Authors

 Platt, Robert


Hierarchical Equivariant Policy via Frame Transfer

arXiv.org Artificial Intelligence

Recent advances in hierarchical policy learning highlight the advantages of decomposing systems into high-level and low-level agents, enabling efficient long-horizon reasoning and precise fine-grained control. However, the interface between these hierarchy levels remains underexplored, and existing hierarchical methods often ignore domain symmetry, resulting in the need for extensive demonstrations to achieve robust performance. To address these issues, we propose Hierarchical Equivariant Policy (HEP), a novel hierarchical policy framework. We propose a frame transfer interface for hierarchical policy learning, which uses the high-level agent's output as a coordinate frame for the low-level agent, providing a strong inductive bias while retaining flexibility. Additionally, we integrate domain symmetries into both levels and theoretically demonstrate the system's overall equivariance. HEP achieves state-of-the-art performance in complex robotic manipulation tasks, demonstrating significant improvements in both simulation and real-world settings.


Coarse-to-Fine 3D Keyframe Transporter

arXiv.org Artificial Intelligence

Recent advances in Keyframe Imitation Learning (IL) have enabled learning-based agents to solve a diverse range of manipulation tasks. However, most approaches ignore the rich symmetries in the problem setting and, as a consequence, are sample-inefficient. This work identifies and utilizes the bi-equivariant symmetry within Keyframe IL to design a policy that generalizes to transformations of both the workspace and the objects grasped by the gripper. We make two main contributions: First, we analyze the bi-equivariance properties of the keyframe action scheme and propose a Keyframe Transporter derived from the Transporter Networks, which evaluates actions using cross-correlation between the features of the grasped object and the features of the scene. Second, we propose a computationally efficient coarse-to-fine SE(3) action evaluation scheme for reasoning the intertwined translation and rotation action. The resulting method outperforms strong Keyframe IL baselines by an average of >10% on a wide range of simulation tasks, and by an average of 55% in 4 physical experiments.


On-Robot Reinforcement Learning with Goal-Contrastive Rewards

arXiv.org Artificial Intelligence

Reinforcement Learning (RL) has the potential to enable robots to learn from their own actions in the real world. Unfortunately, RL can be prohibitively expensive, in terms of on-robot runtime, due to inefficient exploration when learning from a sparse reward signal. Designing dense reward functions is labour-intensive and requires domain expertise. In our work, we propose GCR (Goal-Contrastive Rewards), a dense reward function learning method that can be trained on passive video demonstrations. By using videos without actions, our method is easier to scale, as we can use arbitrary videos. GCR combines two loss functions, an implicit value loss function that models how the reward increases when traversing a successful trajectory, and a goal-contrastive loss that discriminates between successful and failed trajectories. We perform experiments in simulated manipulation environments across RoboMimic and MimicGen tasks, as well as in the real world using a Franka arm and a Spot quadruped. We find that GCR leads to a more-sample efficient RL, enabling model-free RL to solve about twice as many tasks as our baseline reward learning methods. We also demonstrate positive cross-embodiment transfer from videos of people and of other robots performing a task. Appendix: \url{https://tinyurl.com/gcr-appendix-2}.


MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies

arXiv.org Artificial Intelligence

Many manipulation tasks require the robot to rearrange objects relative to one another. Such tasks can be described as a sequence of relative poses between parts of a set of rigid bodies. In this work, we propose MATCH POLICY, a simple but novel pipeline for solving high-precision pick and place tasks. Instead of predicting actions directly, our method registers the pick and place targets to the stored demonstrations. This transfers action inference into a point cloud registration task and enables us to realize nontrivial manipulation policies without any training. MATCH POLICY is designed to solve high-precision tasks with a key-frame setting. By leveraging the geometric interaction and the symmetries of the task, it achieves extremely high sample efficiency and generalizability to unseen configurations. We demonstrate its state-of-the-art performance across various tasks on RLBench benchmark compared with several strong baselines and test it on a real robot with six tasks.


ThinkGrasp: A Vision-Language System for Strategic Part Grasping in Clutter

arXiv.org Artificial Intelligence

The field of robotic grasping has seen significant advancements in recent years, with deep learning and vision-language models driving progress towards more intelligent and adaptable grasping systems [1, 2, 3]. However, robotic grasping in highly cluttered environments remains a major challenge, as target objects are often severely occluded or completely hidden [4, 5, 6]. Even stateof-the-art methods struggle to accurately identify and grasp objects in such scenarios. To address this challenge, we propose ThinkGrasp, which combines the strength of large-scale pretrained vision-language models with an occlusion handling system. ThinkGrasp leverages the advanced reasoning capabilities of models like GPT-4o [7] to gain a visual understanding of environmental and object properties such as sharpness and material composition. By integrating this knowledge through a structured prompt-based chain of thought, ThinkGrasp can significantly enhance success rates and ensure the safety of grasp poses by strategically eliminating obstructing objects. For instance, it prioritizes larger and centrally located objects to maximize visibility and access and focuses on grasping the safest and most advantageous parts, such as handles or flat surfaces. Unlike VL-Grasp[8], which relies on the RoboRefIt dataset for robotic perception and reasoning, ThinkGrasp benefits from GPT-4o's reasoning and generalization capabilities. This allows ThinkGrasp to intuitively select the right objects and achieve higher performance in complex environments, as demonstrated by our comparative experiments.


OrbitGrasp: $SE(3)$-Equivariant Grasp Learning

arXiv.org Artificial Intelligence

While grasp detection is an important part of any robotic manipulation pipeline, reliable and accurate grasp detection in $SE(3)$ remains a research challenge. Many robotics applications in unstructured environments such as the home or warehouse would benefit a lot from better grasp performance. This paper proposes a novel framework for detecting $SE(3)$ grasp poses based on point cloud input. Our main contribution is to propose an $SE(3)$-equivariant model that maps each point in the cloud to a continuous grasp quality function over the 2-sphere $S^2$ using a spherical harmonic basis. Compared with reasoning about a finite set of samples, this formulation improves the accuracy and efficiency of our model when a large number of samples would otherwise be needed. In order to accomplish this, we propose a novel variation on EquiFormerV2 that leverages a UNet-style backbone to enlarge the number of points the model can handle. Our resulting method, which we name $\textit{OrbitGrasp}$, significantly outperforms baselines in both simulation and physical experiments.


Equivariant Diffusion Policy

arXiv.org Artificial Intelligence

Recent work has shown diffusion models are an effective approach to learning the multimodal distributions arising from demonstration data in behavior cloning. However, a drawback of this approach is the need to learn a denoising function, which is significantly more complex than learning an explicit policy. In this work, we propose Equivariant Diffusion Policy, a novel diffusion policy learning method that leverages domain symmetries to obtain better sample efficiency and generalization in the denoising function. We theoretically analyze the $\mathrm{SO}(2)$ symmetry of full 6-DoF control and characterize when a diffusion model is $\mathrm{SO}(2)$-equivariant. We furthermore evaluate the method empirically on a set of 12 simulation tasks in MimicGen, and show that it obtains a success rate that is, on average, 21.9% higher than the baseline Diffusion Policy. We also evaluate the method on a real-world system to show that effective policies can be learned with relatively few training samples, whereas the baseline Diffusion Policy cannot.


Open-vocabulary Pick and Place via Patch-level Semantic Maps

arXiv.org Artificial Intelligence

Controlling robots through natural language instructions in open-vocabulary scenarios is pivotal for enhancing human-robot collaboration and complex robot behavior synthesis. However, achieving this capability poses significant challenges due to the need for a system that can generalize from limited data to a wide range of tasks and environments. Existing methods rely on large, costly datasets and struggle with generalization. This paper introduces Grounded Equivariant Manipulation (GEM), a novel approach that leverages the generative capabilities of pre-trained vision-language models and geometric symmetries to facilitate few-shot and zero-shot learning for open-vocabulary robot manipulation tasks. Our experiments demonstrate GEM's high sample efficiency and superior generalization across diverse pick-and-place tasks in both simulation and real-world experiments, showcasing its ability to adapt to novel instructions and unseen objects with minimal data requirements. GEM advances a significant step forward in the domain of language-conditioned robot control, bridging the gap between semantic understanding and action generation in robotic systems.


Imagination Policy: Using Generative Point Cloud Models for Learning Manipulation Policies

arXiv.org Artificial Intelligence

Humans can imagine goal states during planning and perform actions to match those goals. In this work, we propose Imagination Policy, a novel multi-task key-frame policy network for solving high-precision pick and place tasks. Instead of learning actions directly, Imagination Policy generates point clouds to imagine desired states which are then translated to actions using rigid action estimation. This transforms action inference into a local generative task. We leverage pick and place symmetries underlying the tasks in the generation process and achieve extremely high sample efficiency and generalizability to unseen configurations. Finally, we demonstrate state-of-the-art performance across various tasks on the RLbench benchmark compared with several strong baselines.


Noise2Noise Denoising of CRISM Hyperspectral Data

arXiv.org Artificial Intelligence

Hyperspectral data acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) have allowed for unparalleled mapping of the surface mineralogy of Mars. Due to sensor degradation over time, a significant portion of the recently acquired data is considered unusable. Here a new data-driven model architecture, Noise2Noise4Mars (N2N4M), is introduced to remove noise from CRISM images. Our model is self-supervised and does not require zero-noise target data, making it well suited for use in Planetary Science applications where high quality labelled data is scarce. We demonstrate its strong performance on synthetic-noise data and CRISM images, and its impact on downstream classification performance, outperforming benchmark methods on most metrics. This allows for detailed analysis for critical sites of interest on the Martian surface, including proposed lander sites.