Goto

Collaborating Authors

 Patra, Barun


Scaling Laws for Multilingual Language Models

arXiv.org Artificial Intelligence

We propose a novel scaling law for general-purpose decoder-only language models (LMs) trained on multilingual data, tackling the problem of balancing languages during multilingual pretraining. A primary challenge in studying multilingual scaling is the difficulty of analyzing individual language performance due to cross-lingual transfer. To address this, we shift the focus from individual languages to language families. We introduce and validate a hypothesis that the test cross-entropy loss for each language family is determined solely by its own sampling ratio, independent of other languages in the mixture. This insight simplifies the complexity of multilingual scaling and make the analysis scalable to an arbitrary number of languages. Building on this hypothesis, we derive a power-law relationship that links performance with dataset size, model size and sampling ratios. This relationship enables us to predict performance across various combinations of the above three quantities, and derive the optimal sampling ratios at different model scales. To demonstrate the effectiveness and accuracy of our proposed scaling law, we perform a large-scale empirical study, training more than 100 models on 23 languages spanning 5 language families. Our experiments show that the optimal sampling ratios derived from small models (85M parameters) generalize effectively to models that are several orders of magnitude larger (1.2B parameters), offering a resource-efficient approach for multilingual LM training at scale.


On The Adaptation of Unlimiformer for Decoder-Only Transformers

arXiv.org Artificial Intelligence

One of the prominent issues stifling the current generation of large language models is their limited context length. Recent proprietary models such as GPT-4 and Claude 2 have introduced longer context lengths, 8k/32k and 100k, respectively; however, despite the efforts in the community, most common models, such as LLama-2, have a context length of 4k or less. Unlimiformer (Bertsch et al., 2023) is a recently popular vector-retrieval augmentation method that offloads cross-attention computations to a kNN index. However, its main limitation is incompatibility with decoder-only transformers out of the box. In this work, we explore practical considerations of adapting Unlimiformer to decoder-only transformers and introduce a series of modifications to overcome this limitation. Moreover, we expand the original experimental setup on summarization to include a new task (i.e., free-form Q&A) and an instruction-tuned model (i.e., a custom 6.7B GPT model). Our results showcase the effectiveness of these modifications on summarization, performing on par with a model with 2x the context length. Moreover, we discuss limitations and future directions for free-form Q&A and instruction-tuned models.


sPhinX: Sample Efficient Multilingual Instruction Fine-Tuning Through N-shot Guided Prompting

arXiv.org Artificial Intelligence

Despite the remarkable success of LLMs in English, there is a significant gap in performance in non-English languages. In order to address this, we introduce a novel recipe for creating a multilingual synthetic instruction tuning dataset, sPhinX, which is created by selectively translating instruction response pairs from English into 50 languages. We test the effectiveness of sPhinX by using it to fine-tune two state-of-the-art models, Phi-3-small and Mistral-7B and then evaluating them across a comprehensive suite of multilingual benchmarks that test reasoning, question answering, and reading comprehension. Our results show that Phi-3-small and Mistral-7B fine-tuned with sPhinX perform better on an average by 4.2%pt and 5%pt respectively as compared to the baselines. We also devise a strategy to incorporate N-shot examples in each fine-tuning sample which further boosts the performance of these models by 3%pt and 10%pt respectively. Additionally, sPhinX also outperforms other multilingual instruction tuning datasets on the same benchmarks along with being sample efficient and diverse, thereby reducing dataset creation costs. Additionally, instruction tuning with sPhinX does not lead to regression on most standard LLM benchmarks.


Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone

arXiv.org Artificial Intelligence

We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). Moreover, we also introduce phi-3-vision, a 4.2 billion parameter model based on phi-3-mini with strong reasoning capabilities for image and text prompts.


A Glitch in the Matrix? Locating and Detecting Language Model Grounding with Fakepedia

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated impressive capabilities in storing and recalling factual knowledge, but also in adapting to novel in-context information. Yet, the mechanisms underlying their in-context grounding remain unknown, especially in situations where in-context information contradicts factual knowledge embedded in the parameters. This is critical for retrieval-augmented generation methods, which enrich the context with up-to-date information, hoping that grounding can rectify the outdated parametric knowledge. In this study, we introduce Fakepedia, a counterfactual dataset designed to evaluate grounding abilities when the parametric knowledge clashes with the in-context information. We benchmark various LLMs with Fakepedia and discover that GPT-4-turbo has a strong preference for its parametric knowledge. Mistral-7B, on the contrary, is the model that most robustly chooses the grounded answer. Then, we conduct causal mediation analysis on LLM components when answering Fakepedia queries. We demonstrate that inspection of the computational graph alone can predict LLM grounding with 92.8% accuracy, especially because few MLPs in the Transformer can predict non-grounded behavior. Our results, together with existing findings about factual recall mechanisms, provide a coherent narrative of how grounding and factual recall mechanisms interact within LLMs.


Language Model Decoding as Likelihood-Utility Alignment

arXiv.org Artificial Intelligence

A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of a decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios, and their findings do not generalize across tasks. We argue that the misalignment between the model's likelihood and the task-specific notion of utility is the key factor to understanding the effectiveness of decoding algorithms. To structure the discussion, we introduce a taxonomy of misalignment mitigation strategies (MMSs), providing a unifying view of decoding as a tool for alignment. The MMS taxonomy groups decoding algorithms based on their implicit assumptions about likelihood--utility misalignment, yielding general statements about their applicability across tasks. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide empirical evidence supporting the proposed taxonomy and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first to relate likelihood-based decoding algorithms with algorithms that rely on external information, such as value-guided methods and prompting, and covers the most diverse set of tasks to date. Code, data, and models are available at https://github.com/epfl-dlab/understanding-decoding.


Language Is Not All You Need: Aligning Perception with Language Models

arXiv.org Artificial Intelligence

A big convergence of language, multimodal perception, action, and world modeling is a key step toward artificial general intelligence. In this work, we introduce Kosmos-1, a Multimodal Large Language Model (MLLM) that can perceive general modalities, learn in context (i.e., few-shot), and follow instructions (i.e., zero-shot). Specifically, we train Kosmos-1 from scratch on web-scale multimodal corpora, including arbitrarily interleaved text and images, image-caption pairs, and text data. We evaluate various settings, including zero-shot, few-shot, and multimodal chain-of-thought prompting, on a wide range of tasks without any gradient updates or finetuning. Experimental results show that Kosmos-1 achieves impressive performance on (i) language understanding, generation, and even OCR-free NLP (directly fed with document images), (ii) perception-language tasks, including multimodal dialogue, image captioning, visual question answering, and (iii) vision tasks, such as image recognition with descriptions (specifying classification via text instructions). We also show that MLLMs can benefit from cross-modal transfer, i.e., transfer knowledge from language to multimodal, and from multimodal to language. In addition, we introduce a dataset of Raven IQ test, which diagnoses the nonverbal reasoning capability of MLLMs.


A Length-Extrapolatable Transformer

arXiv.org Artificial Intelligence

Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at https://aka.ms/LeX-Transformer.


TorchScale: Transformers at Scale

arXiv.org Artificial Intelligence

Large Transformers have achieved state-of-the-art performance across many tasks. Most open-source libraries on scaling Transformers focus on improving training or inference with better parallelization. In this work, we present TorchScale, an open-source toolkit that allows researchers and developers to scale up Transformers efficiently and effectively. TorchScale has the implementation of several modeling techniques, which can improve modeling generality and capability, as well as training stability and efficiency. Experimental results on language modeling and neural machine translation demonstrate that TorchScale can successfully scale Transformers to different sizes without tears. The library is available at https://aka.ms/torchscale.


Compression and Localization in Reinforcement Learning for ATARI Games

arXiv.org Artificial Intelligence

Deep neural networks have become commonplace in the domain of reinforcement learning, but are often expensive in terms of the number of parameters needed. While compressing deep neural networks has of late assumed great importance to overcome this drawback, little work has been done to address this problem in the context of reinforcement learning agents. This work aims at making first steps towards model compression in an RL agent. In particular, we compress networks to drastically reduce the number of parameters in them (to sizes less than 3% of their original size), further facilitated by applying a global max pool after the final convolution layer, and propose using Actor-Mimic in the context of compression. Finally, we show that this global max-pool allows for weakly supervised object localization, improving the ability to identify the agent's points of focus.