Pati, Sarthak
GaNDLF-Synth: A Framework to Democratize Generative AI for (Bio)Medical Imaging
Pati, Sarthak, Mazurek, Szymon, Bakas, Spyridon
Generative Artificial Intelligence (GenAI) is a field of AI that creates new data samples from existing ones. It utilizing deep learning to overcome the scarcity and regulatory constraints of healthcare data by generating new data points that integrate seamlessly with original datasets. This paper explores the background and motivation for GenAI, and introduces the Generally Nuanced Deep Learning Framework for Synthesis (GaNDLF-Synth) to address a significant gap in the literature and move towards democratizing the implementation and assessment of image synthesis tasks in healthcare. GaNDLF-Synth describes a unified abstraction for various synthesis algorithms, including autoencoders, generative adversarial networks, and diffusion models. Leveraging the GANDLF-core framework, it supports diverse data modalities and distributed computing, ensuring scalability and reproducibility through extensive unit testing. The aim of GaNDLF-Synth is to lower the entry barrier for GenAI, and make it more accessible and extensible by the wider scientific community.
Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation
LaBella, Dominic, Schumacher, Katherine, Mix, Michael, Leu, Kevin, McBurney-Lin, Shan, Nedelec, Pierre, Villanueva-Meyer, Javier, Shapey, Jonathan, Vercauteren, Tom, Chia, Kazumi, Al-Salihi, Omar, Leu, Justin, Halasz, Lia, Velichko, Yury, Wang, Chunhao, Kirkpatrick, John, Floyd, Scott, Reitman, Zachary J., Mullikin, Trey, Bagci, Ulas, Sachdev, Sean, Hattangadi-Gluth, Jona A., Seibert, Tyler, Farid, Nikdokht, Puett, Connor, Pease, Matthew W., Shiue, Kevin, Anwar, Syed Muhammad, Faghani, Shahriar, Haider, Muhammad Ammar, Warman, Pranav, Albrecht, Jake, Jakab, András, Moassefi, Mana, Chung, Verena, Aristizabal, Alejandro, Karargyris, Alexandros, Kassem, Hasan, Pati, Sarthak, Sheller, Micah, Huang, Christina, Coley, Aaron, Ghanta, Siddharth, Schneider, Alex, Sharp, Conrad, Saluja, Rachit, Kofler, Florian, Lohmann, Philipp, Vollmuth, Phillipp, Gagnon, Louis, Adewole, Maruf, Li, Hongwei Bran, Kazerooni, Anahita Fathi, Tahon, Nourel Hoda, Anazodo, Udunna, Moawad, Ahmed W., Menze, Bjoern, Linguraru, Marius George, Aboian, Mariam, Wiestler, Benedikt, Baid, Ujjwal, Conte, Gian-Marco, Rauschecker, Andreas M. T., Nada, Ayman, Abayazeed, Aly H., Huang, Raymond, de Verdier, Maria Correia, Rudie, Jeffrey D., Bakas, Spyridon, Calabrese, Evan
The 2024 Brain Tumor Segmentation Meningioma Radiotherapy (BraTS-MEN-RT) challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs with expert-annotated target labels for patients with intact or post-operative meningioma that underwent either conventional external beam radiotherapy or stereotactic radiosurgery. Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space, accompanied by a single-label "target volume" representing the gross tumor volume (GTV) and any at-risk post-operative site. Target volume annotations adhere to established radiotherapy planning protocols, ensuring consistency across cases and institutions. For pre-operative meningiomas, the target volume encompasses the entire GTV and associated nodular dural tail, while for post-operative cases, it includes at-risk resection cavity margins as determined by the treating institution. Case annotations were reviewed and approved by expert neuroradiologists and radiation oncologists. Participating teams will develop, containerize, and evaluate automated segmentation models using this comprehensive dataset. Model performance will be assessed using the lesion-wise Dice Similarity Coefficient and the 95% Hausdorff distance. The top-performing teams will be recognized at the Medical Image Computing and Computer Assisted Intervention Conference in October 2024. BraTS-MEN-RT is expected to significantly advance automated radiotherapy planning by enabling precise tumor segmentation and facilitating tailored treatment, ultimately improving patient outcomes.
Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge
LaBella, Dominic, Baid, Ujjwal, Khanna, Omaditya, McBurney-Lin, Shan, McLean, Ryan, Nedelec, Pierre, Rashid, Arif, Tahon, Nourel Hoda, Altes, Talissa, Bhalerao, Radhika, Dhemesh, Yaseen, Godfrey, Devon, Hilal, Fathi, Floyd, Scott, Janas, Anastasia, Kazerooni, Anahita Fathi, Kirkpatrick, John, Kent, Collin, Kofler, Florian, Leu, Kevin, Maleki, Nazanin, Menze, Bjoern, Pajot, Maxence, Reitman, Zachary J., Rudie, Jeffrey D., Saluja, Rachit, Velichko, Yury, Wang, Chunhao, Warman, Pranav, Adewole, Maruf, Albrecht, Jake, Anazodo, Udunna, Anwar, Syed Muhammad, Bergquist, Timothy, Chen, Sully Francis, Chung, Verena, Conte, Gian-Marco, Dako, Farouk, Eddy, James, Ezhov, Ivan, Khalili, Nastaran, Iglesias, Juan Eugenio, Jiang, Zhifan, Johanson, Elaine, Van Leemput, Koen, Li, Hongwei Bran, Linguraru, Marius George, Liu, Xinyang, Mahtabfar, Aria, Meier, Zeke, Moawad, Ahmed W., Mongan, John, Piraud, Marie, Shinohara, Russell Takeshi, Wiggins, Walter F., Abayazeed, Aly H., Akinola, Rachel, Jakab, András, Bilello, Michel, de Verdier, Maria Correia, Crivellaro, Priscila, Davatzikos, Christos, Farahani, Keyvan, Freymann, John, Hess, Christopher, Huang, Raymond, Lohmann, Philipp, Moassefi, Mana, Pease, Matthew W., Vollmuth, Phillipp, Sollmann, Nico, Diffley, David, Nandolia, Khanak K., Warren, Daniel I., Hussain, Ali, Fehringer, Pascal, Bronstein, Yulia, Deptula, Lisa, Stein, Evan G., Taherzadeh, Mahsa, de Oliveira, Eduardo Portela, Haughey, Aoife, Kontzialis, Marinos, Saba, Luca, Turner, Benjamin, Brüßeler, Melanie M. T., Ansari, Shehbaz, Gkampenis, Athanasios, Weiss, David Maximilian, Mansour, Aya, Shawali, Islam H., Yordanov, Nikolay, Stein, Joel M., Hourani, Roula, Moshebah, Mohammed Yahya, Abouelatta, Ahmed Magdy, Rizvi, Tanvir, Willms, Klara, Martin, Dann C., Okar, Abdullah, D'Anna, Gennaro, Taha, Ahmed, Sharifi, Yasaman, Faghani, Shahriar, Kite, Dominic, Pinho, Marco, Haider, Muhammad Ammar, Aristizabal, Alejandro, Karargyris, Alexandros, Kassem, Hasan, Pati, Sarthak, Sheller, Micah, Alonso-Basanta, Michelle, Villanueva-Meyer, Javier, Rauschecker, Andreas M., Nada, Ayman, Aboian, Mariam, Flanders, Adam E., Wiestler, Benedikt, Bakas, Spyridon, Calabrese, Evan
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283 hidden test set cases. Each case included T2, T2/FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing T2/FLAIR hyperintensity. Participant automated segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899, 0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
MammoFL: Mammographic Breast Density Estimation using Federated Learning
Muthukrishnan, Ramya, Heyler, Angelina, Katti, Keshava, Pati, Sarthak, Mankowski, Walter, Alahari, Aprupa, Sanborn, Michael, Conant, Emily F., Scott, Christopher, Winham, Stacey, Vachon, Celine, Chaudhari, Pratik, Kontos, Despina, Bakas, Spyridon
In this study, we automate quantitative mammographic breast density estimation with neural networks and show that this tool is a strong use case for federated learning on multi-institutional datasets. Our dataset included bilateral CC-view and MLO-view mammographic images from two separate institutions. Two U-Nets were separately trained on algorithm-generated labels to perform segmentation of the breast and dense tissue from these images and subsequently calculate breast percent density (PD). The networks were trained with federated learning and compared to three non-federated baselines, one trained on each single-institution dataset and one trained on the aggregated multi-institution dataset. We demonstrate that training on multi-institution datasets is critical to algorithm generalizability. We further show that federated learning on multi-institutional datasets improves model generalization to unseen data at nearly the same level as centralized training on multi-institutional datasets, indicating that federated learning can be applied to our method to improve algorithm generalizability while maintaining patient privacy.
Panoptica -- instance-wise evaluation of 3D semantic and instance segmentation maps
Kofler, Florian, Möller, Hendrik, Buchner, Josef A., de la Rosa, Ezequiel, Ezhov, Ivan, Rosier, Marcel, Mekki, Isra, Shit, Suprosanna, Negwer, Moritz, Al-Maskari, Rami, Ertürk, Ali, Vinayahalingam, Shankeeth, Isensee, Fabian, Pati, Sarthak, Rueckert, Daniel, Kirschke, Jan S., Ehrlich, Stefan K., Reinke, Annika, Menze, Bjoern, Wiestler, Benedikt, Piraud, Marie
This paper introduces panoptica, a versatile and performance-optimized package designed for computing instance-wise segmentation quality metrics from 2D and 3D segmentation maps. panoptica addresses the limitations of existing metrics and provides a modular framework that complements the original intersection over union-based panoptic quality with other metrics, such as the distance metric Average Symmetric Surface Distance. The package is open-source, implemented in Python, and accompanied by comprehensive documentation and tutorials. panoptica employs a three-step metrics computation process to cover diverse use cases. The efficacy of panoptica is demonstrated on various real-world biomedical datasets, where an instance-wise evaluation is instrumental for an accurate representation of the underlying clinical task. Overall, we envision panoptica as a valuable tool facilitating in-depth evaluation of segmentation methods.
Biomedical image analysis competitions: The state of current participation practice
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Godau, Patrick, Cheplygina, Veronika, Kozubek, Michal, Ali, Sharib, Gupta, Anubha, Kybic, Jan, Noble, Alison, de Solórzano, Carlos Ortiz, Pachade, Samiksha, Petitjean, Caroline, Sage, Daniel, Wei, Donglai, Wilden, Elizabeth, Alapatt, Deepak, Andrearczyk, Vincent, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bawa, Vivek Singh, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Choi, Jinwook, Commowick, Olivier, Daum, Marie, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Eichhorn, Hannah, Engelhardt, Sandy, Ganz, Melanie, Girard, Gabriel, Hansen, Lasse, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Kim, Hyunjeong, Landman, Bennett, Li, Hongwei Bran, Li, Jianning, Ma, Jun, Martel, Anne, Martín-Isla, Carlos, Menze, Bjoern, Nwoye, Chinedu Innocent, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Sudre, Carole, van Wijnen, Kimberlin, Vardazaryan, Armine, Vercauteren, Tom, Wagner, Martin, Wang, Chuanbo, Yap, Moi Hoon, Yu, Zeyun, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Bao, Rina, Choi, Chanyeol, Cohen, Andrew, Dzyubachyk, Oleh, Galdran, Adrian, Gan, Tianyuan, Guo, Tianqi, Gupta, Pradyumna, Haithami, Mahmood, Ho, Edward, Jang, Ikbeom, Li, Zhili, Luo, Zhengbo, Lux, Filip, Makrogiannis, Sokratis, Müller, Dominik, Oh, Young-tack, Pang, Subeen, Pape, Constantin, Polat, Gorkem, Reed, Charlotte Rosalie, Ryu, Kanghyun, Scherr, Tim, Thambawita, Vajira, Wang, Haoyu, Wang, Xinliang, Xu, Kele, Yeh, Hung, Yeo, Doyeob, Yuan, Yixuan, Zeng, Yan, Zhao, Xin, Abbing, Julian, Adam, Jannes, Adluru, Nagesh, Agethen, Niklas, Ahmed, Salman, Khalil, Yasmina Al, Alenyà, Mireia, Alhoniemi, Esa, An, Chengyang, Anwar, Talha, Arega, Tewodros Weldebirhan, Avisdris, Netanell, Aydogan, Dogu Baran, Bai, Yingbin, Calisto, Maria Baldeon, Basaran, Berke Doga, Beetz, Marcel, Bian, Cheng, Bian, Hao, Blansit, Kevin, Bloch, Louise, Bohnsack, Robert, Bosticardo, Sara, Breen, Jack, Brudfors, Mikael, Brüngel, Raphael, Cabezas, Mariano, Cacciola, Alberto, Chen, Zhiwei, Chen, Yucong, Chen, Daniel Tianming, Cho, Minjeong, Choi, Min-Kook, Xie, Chuantao Xie Chuantao, Cobzas, Dana, Cohen-Adad, Julien, Acero, Jorge Corral, Das, Sujit Kumar, de Oliveira, Marcela, Deng, Hanqiu, Dong, Guiming, Doorenbos, Lars, Efird, Cory, Escalera, Sergio, Fan, Di, Serj, Mehdi Fatan, Fenneteau, Alexandre, Fidon, Lucas, Filipiak, Patryk, Finzel, René, Freitas, Nuno R., Friedrich, Christoph M., Fulton, Mitchell, Gaida, Finn, Galati, Francesco, Galazis, Christoforos, Gan, Chang Hee, Gao, Zheyao, Gao, Shengbo, Gazda, Matej, Gerats, Beerend, Getty, Neil, Gibicar, Adam, Gifford, Ryan, Gohil, Sajan, Grammatikopoulou, Maria, Grzech, Daniel, Güley, Orhun, Günnemann, Timo, Guo, Chunxu, Guy, Sylvain, Ha, Heonjin, Han, Luyi, Han, Il Song, Hatamizadeh, Ali, He, Tian, Heo, Jimin, Hitziger, Sebastian, Hong, SeulGi, Hong, SeungBum, Huang, Rian, Huang, Ziyan, Huellebrand, Markus, Huschauer, Stephan, Hussain, Mustaffa, Inubushi, Tomoo, Polat, Ece Isik, Jafaritadi, Mojtaba, Jeong, SeongHun, Jian, Bailiang, Jiang, Yuanhong, Jiang, Zhifan, Jin, Yueming, Joshi, Smriti, Kadkhodamohammadi, Abdolrahim, Kamraoui, Reda Abdellah, Kang, Inha, Kang, Junghwa, Karimi, Davood, Khademi, April, Khan, Muhammad Irfan, Khan, Suleiman A., Khantwal, Rishab, Kim, Kwang-Ju, Kline, Timothy, Kondo, Satoshi, Kontio, Elina, Krenzer, Adrian, Kroviakov, Artem, Kuijf, Hugo, Kumar, Satyadwyoom, La Rosa, Francesco, Lad, Abhi, Lee, Doohee, Lee, Minho, Lena, Chiara, Li, Hao, Li, Ling, Li, Xingyu, Liao, Fuyuan, Liao, KuanLun, Oliveira, Arlindo Limede, Lin, Chaonan, Lin, Shan, Linardos, Akis, Linguraru, Marius George, Liu, Han, Liu, Tao, Liu, Di, Liu, Yanling, Lourenço-Silva, João, Lu, Jingpei, Lu, Jiangshan, Luengo, Imanol, Lund, Christina B., Luu, Huan Minh, Lv, Yi, Lv, Yi, Macar, Uzay, Maechler, Leon, L., Sina Mansour, Marshall, Kenji, Mazher, Moona, McKinley, Richard, Medela, Alfonso, Meissen, Felix, Meng, Mingyuan, Miller, Dylan, Mirjahanmardi, Seyed Hossein, Mishra, Arnab, Mitha, Samir, Mohy-ud-Din, Hassan, Mok, Tony Chi Wing, Murugesan, Gowtham Krishnan, Karthik, Enamundram Naga, Nalawade, Sahil, Nalepa, Jakub, Naser, Mohamed, Nateghi, Ramin, Naveed, Hammad, Nguyen, Quang-Minh, Quoc, Cuong Nguyen, Nichyporuk, Brennan, Oliveira, Bruno, Owen, David, Pal, Jimut Bahan, Pan, Junwen, Pan, Wentao, Pang, Winnie, Park, Bogyu, Pawar, Vivek, Pawar, Kamlesh, Peven, Michael, Philipp, Lena, Pieciak, Tomasz, Plotka, Szymon, Plutat, Marcel, Pourakpour, Fattaneh, Preložnik, Domen, Punithakumar, Kumaradevan, Qayyum, Abdul, Queirós, Sandro, Rahmim, Arman, Razavi, Salar, Ren, Jintao, Rezaei, Mina, Rico, Jonathan Adam, Rieu, ZunHyan, Rink, Markus, Roth, Johannes, Ruiz-Gonzalez, Yusely, Saeed, Numan, Saha, Anindo, Salem, Mostafa, Sanchez-Matilla, Ricardo, Schilling, Kurt, Shao, Wei, Shen, Zhiqiang, Shi, Ruize, Shi, Pengcheng, Sobotka, Daniel, Soulier, Théodore, Fadida, Bella Specktor, Stoyanov, Danail, Mun, Timothy Sum Hon, Sun, Xiaowu, Tao, Rong, Thaler, Franz, Théberge, Antoine, Thielke, Felix, Torres, Helena, Wahid, Kareem A., Wang, Jiacheng, Wang, YiFei, Wang, Wei, Wang, Xiong, Wen, Jianhui, Wen, Ning, Wodzinski, Marek, Wu, Ye, Xia, Fangfang, Xiang, Tianqi, Xiaofei, Chen, Xu, Lizhan, Xue, Tingting, Yang, Yuxuan, Yang, Lin, Yao, Kai, Yao, Huifeng, Yazdani, Amirsaeed, Yip, Michael, Yoo, Hwanseung, Yousefirizi, Fereshteh, Yu, Shunkai, Yu, Lei, Zamora, Jonathan, Zeineldin, Ramy Ashraf, Zeng, Dewen, Zhang, Jianpeng, Zhang, Bokai, Zhang, Jiapeng, Zhang, Fan, Zhang, Huahong, Zhao, Zhongchen, Zhao, Zixuan, Zhao, Jiachen, Zhao, Can, Zheng, Qingshuo, Zhi, Yuheng, Zhou, Ziqi, Zou, Baosheng, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging
Pati, Sarthak, Thakur, Siddhesh P., Hamamcı, İbrahim Ethem, Baid, Ujjwal, Baheti, Bhakti, Bhalerao, Megh, Güley, Orhun, Mouchtaris, Sofia, Lang, David, Thermos, Spyridon, Gotkowski, Karol, González, Camila, Grenko, Caleb, Getka, Alexander, Edwards, Brandon, Sheller, Micah, Wu, Junwen, Karkada, Deepthi, Panchumarthy, Ravi, Ahluwalia, Vinayak, Zou, Chunrui, Bashyam, Vishnu, Li, Yuemeng, Haghighi, Babak, Chitalia, Rhea, Abousamra, Shahira, Kurc, Tahsin M., Gastounioti, Aimilia, Er, Sezgin, Bergman, Mark, Saltz, Joel H., Fan, Yong, Shah, Prashant, Mukhopadhyay, Anirban, Tsaftaris, Sotirios A., Menze, Bjoern, Davatzikos, Christos, Kontos, Despina, Karargyris, Alexandros, Umeton, Renato, Mattson, Peter, Bakas, Spyridon
Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.
Why is the winner the best?
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Ali, Sharib, Andrearczyk, Vincent, Aubreville, Marc, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Cheplygina, Veronika, Daum, Marie, de Bruijne, Marleen, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Ellis, David G., Engelhardt, Sandy, Ganz, Melanie, Ghatwary, Noha, Girard, Gabriel, Godau, Patrick, Gupta, Anubha, Hansen, Lasse, Harada, Kanako, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Jannin, Pierre, Kavur, Ali Emre, Kodym, Oldřich, Kozubek, Michal, Li, Jianning, Li, Hongwei, Ma, Jun, Martín-Isla, Carlos, Menze, Bjoern, Noble, Alison, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Rädsch, Tim, Rafael-Patiño, Jonathan, Bawa, Vivek Singh, Speidel, Stefanie, Sudre, Carole H., van Wijnen, Kimberlin, Wagner, Martin, Wei, Donglai, Yamlahi, Amine, Yap, Moi Hoon, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Aydogan, Dogu Baran, Bhattarai, Binod, Bloch, Louise, Brüngel, Raphael, Cho, Jihoon, Choi, Chanyeol, Dou, Qi, Ezhov, Ivan, Friedrich, Christoph M., Fuller, Clifton, Gaire, Rebati Raman, Galdran, Adrian, Faura, Álvaro García, Grammatikopoulou, Maria, Hong, SeulGi, Jahanifar, Mostafa, Jang, Ikbeom, Kadkhodamohammadi, Abdolrahim, Kang, Inha, Kofler, Florian, Kondo, Satoshi, Kuijf, Hugo, Li, Mingxing, Luu, Minh Huan, Martinčič, Tomaž, Morais, Pedro, Naser, Mohamed A., Oliveira, Bruno, Owen, David, Pang, Subeen, Park, Jinah, Park, Sung-Hong, Płotka, Szymon, Puybareau, Elodie, Rajpoot, Nasir, Ryu, Kanghyun, Saeed, Numan, Shephard, Adam, Shi, Pengcheng, Štepec, Dejan, Subedi, Ronast, Tochon, Guillaume, Torres, Helena R., Urien, Helene, Vilaça, João L., Wahid, Kareem Abdul, Wang, Haojie, Wang, Jiacheng, Wang, Liansheng, Wang, Xiyue, Wiestler, Benedikt, Wodzinski, Marek, Xia, Fangfang, Xie, Juanying, Xiong, Zhiwei, Yang, Sen, Yang, Yanwu, Zhao, Zixuan, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, Maier-Hein, Lena
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Pati, Sarthak, Baid, Ujjwal, Edwards, Brandon, Sheller, Micah, Wang, Shih-Han, Reina, G Anthony, Foley, Patrick, Gruzdev, Alexey, Karkada, Deepthi, Davatzikos, Christos, Sako, Chiharu, Ghodasara, Satyam, Bilello, Michel, Mohan, Suyash, Vollmuth, Philipp, Brugnara, Gianluca, Preetha, Chandrakanth J, Sahm, Felix, Maier-Hein, Klaus, Zenk, Maximilian, Bendszus, Martin, Wick, Wolfgang, Calabrese, Evan, Rudie, Jeffrey, Villanueva-Meyer, Javier, Cha, Soonmee, Ingalhalikar, Madhura, Jadhav, Manali, Pandey, Umang, Saini, Jitender, Garrett, John, Larson, Matthew, Jeraj, Robert, Currie, Stuart, Frood, Russell, Fatania, Kavi, Huang, Raymond Y, Chang, Ken, Balana, Carmen, Capellades, Jaume, Puig, Josep, Trenkler, Johannes, Pichler, Josef, Necker, Georg, Haunschmidt, Andreas, Meckel, Stephan, Shukla, Gaurav, Liem, Spencer, Alexander, Gregory S, Lombardo, Joseph, Palmer, Joshua D, Flanders, Adam E, Dicker, Adam P, Sair, Haris I, Jones, Craig K, Venkataraman, Archana, Jiang, Meirui, So, Tiffany Y, Chen, Cheng, Heng, Pheng Ann, Dou, Qi, Kozubek, Michal, Lux, Filip, Michálek, Jan, Matula, Petr, Keřkovský, Miloš, Kopřivová, Tereza, Dostál, Marek, Vybíhal, Václav, Vogelbaum, Michael A, Mitchell, J Ross, Farinhas, Joaquim, Maldjian, Joseph A, Yogananda, Chandan Ganesh Bangalore, Pinho, Marco C, Reddy, Divya, Holcomb, James, Wagner, Benjamin C, Ellingson, Benjamin M, Cloughesy, Timothy F, Raymond, Catalina, Oughourlian, Talia, Hagiwara, Akifumi, Wang, Chencai, To, Minh-Son, Bhardwaj, Sargam, Chong, Chee, Agzarian, Marc, Falcão, Alexandre Xavier, Martins, Samuel B, Teixeira, Bernardo C A, Sprenger, Flávia, Menotti, David, Lucio, Diego R, LaMontagne, Pamela, Marcus, Daniel, Wiestler, Benedikt, Kofler, Florian, Ezhov, Ivan, Metz, Marie, Jain, Rajan, Lee, Matthew, Lui, Yvonne W, McKinley, Richard, Slotboom, Johannes, Radojewski, Piotr, Meier, Raphael, Wiest, Roland, Murcia, Derrick, Fu, Eric, Haas, Rourke, Thompson, John, Ormond, David Ryan, Badve, Chaitra, Sloan, Andrew E, Vadmal, Vachan, Waite, Kristin, Colen, Rivka R, Pei, Linmin, Ak, Murat, Srinivasan, Ashok, Bapuraj, J Rajiv, Rao, Arvind, Wang, Nicholas, Yoshiaki, Ota, Moritani, Toshio, Turk, Sevcan, Lee, Joonsang, Prabhudesai, Snehal, Morón, Fanny, Mandel, Jacob, Kamnitsas, Konstantinos, Glocker, Ben, Dixon, Luke V M, Williams, Matthew, Zampakis, Peter, Panagiotopoulos, Vasileios, Tsiganos, Panagiotis, Alexiou, Sotiris, Haliassos, Ilias, Zacharaki, Evangelia I, Moustakas, Konstantinos, Kalogeropoulou, Christina, Kardamakis, Dimitrios M, Choi, Yoon Seong, Lee, Seung-Koo, Chang, Jong Hee, Ahn, Sung Soo, Luo, Bing, Poisson, Laila, Wen, Ning, Tiwari, Pallavi, Verma, Ruchika, Bareja, Rohan, Yadav, Ipsa, Chen, Jonathan, Kumar, Neeraj, Smits, Marion, van der Voort, Sebastian R, Alafandi, Ahmed, Incekara, Fatih, Wijnenga, Maarten MJ, Kapsas, Georgios, Gahrmann, Renske, Schouten, Joost W, Dubbink, Hendrikus J, Vincent, Arnaud JPE, Bent, Martin J van den, French, Pim J, Klein, Stefan, Yuan, Yading, Sharma, Sonam, Tseng, Tzu-Chi, Adabi, Saba, Niclou, Simone P, Keunen, Olivier, Hau, Ann-Christin, Vallières, Martin, Fortin, David, Lepage, Martin, Landman, Bennett, Ramadass, Karthik, Xu, Kaiwen, Chotai, Silky, Chambless, Lola B, Mistry, Akshitkumar, Thompson, Reid C, Gusev, Yuriy, Bhuvaneshwar, Krithika, Sayah, Anousheh, Bencheqroun, Camelia, Belouali, Anas, Madhavan, Subha, Booth, Thomas C, Chelliah, Alysha, Modat, Marc, Shuaib, Haris, Dragos, Carmen, Abayazeed, Aly, Kolodziej, Kenneth, Hill, Michael, Abbassy, Ahmed, Gamal, Shady, Mekhaimar, Mahmoud, Qayati, Mohamed, Reyes, Mauricio, Park, Ji Eun, Yun, Jihye, Kim, Ho Sung, Mahajan, Abhishek, Muzi, Mark, Benson, Sean, Beets-Tan, Regina G H, Teuwen, Jonas, Herrera-Trujillo, Alejandro, Trujillo, Maria, Escobar, William, Abello, Ana, Bernal, Jose, Gómez, Jhon, Choi, Joseph, Baek, Stephen, Kim, Yusung, Ismael, Heba, Allen, Bryan, Buatti, John M, Kotrotsou, Aikaterini, Li, Hongwei, Weiss, Tobias, Weller, Michael, Bink, Andrea, Pouymayou, Bertrand, Shaykh, Hassan F, Saltz, Joel, Prasanna, Prateek, Shrestha, Sampurna, Mani, Kartik M, Payne, David, Kurc, Tahsin, Pelaez, Enrique, Franco-Maldonado, Heydy, Loayza, Francis, Quevedo, Sebastian, Guevara, Pamela, Torche, Esteban, Mendoza, Cristobal, Vera, Franco, Ríos, Elvis, López, Eduardo, Velastin, Sergio A, Ogbole, Godwin, Oyekunle, Dotun, Odafe-Oyibotha, Olubunmi, Osobu, Babatunde, Shu'aibu, Mustapha, Dorcas, Adeleye, Soneye, Mayowa, Dako, Farouk, Simpson, Amber L, Hamghalam, Mohammad, Peoples, Jacob J, Hu, Ricky, Tran, Anh, Cutler, Danielle, Moraes, Fabio Y, Boss, Michael A, Gimpel, James, Veettil, Deepak Kattil, Schmidt, Kendall, Bialecki, Brian, Marella, Sailaja, Price, Cynthia, Cimino, Lisa, Apgar, Charles, Shah, Prashant, Menze, Bjoern, Barnholtz-Sloan, Jill S, Martin, Jason, Bakas, Spyridon
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25, 256 MRI scans from 6, 314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.