Goto

Collaborating Authors

 Pathiraja, Bimsara


Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning

arXiv.org Artificial Intelligence

Reasoning abilities of LLMs have been a key focus in recent years. One challenging reasoning domain with interesting nuances is legal reasoning, which requires careful application of rules, and precedents while balancing deductive and analogical reasoning, and conflicts between rules. Although there have been a few works on using LLMs for legal reasoning, their focus has been on overall accuracy. In this paper, we dig deeper to do a step-by-step analysis and figure out where they commit errors. We use the college-level Multiple Choice Question-Answering (MCQA) task from the \textit{Civil Procedure} dataset and propose a new error taxonomy derived from initial manual analysis of reasoning chains with respect to several LLMs, including two objective measures: soundness and correctness scores. We then develop an LLM-based automated evaluation framework to identify reasoning errors and evaluate the performance of LLMs. The computation of soundness and correctness on the dataset using the auto-evaluator framework reveals several interesting insights. Furthermore, we show that incorporating the error taxonomy as feedback in popular prompting techniques marginally increases LLM performance. Our work will also serve as an evaluation framework that can be used in detailed error analysis of reasoning chains for logic-intensive complex tasks.


ExpressivityArena: Can LLMs Express Information Implicitly?

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) have demonstrated remarkable performance in certain dimensions, their ability to express implicit language cues that human use for effective communication remains unclear. This paper presents ExpressivityArena, a Python library for measuring the implicit communication abilities of LLMs. We provide a comprehensive framework to evaluate expressivity of arbitrary LLMs and explore its practical implications. To this end, we refine the definition and measurements of ``expressivity,'' and use our framework in a set of small experiments. These experiments test LLMs in creative and logical tasks such as poetry, coding, and emotion-based responses. They are then evaluated by an automated grader, through ExpressivityArena, which we verify to be the most pragmatic for testing expressivity. Building on these experiments, we deepen our understanding of the expressivity of LLMs by assessing their ability to remain expressive in conversations. Our findings indicate that LLMs are capable of generating and understanding expressive content, however, with some limitations. These insights will inform the future development and deployment of expressive LLMs. We provide the code for ExpressivityArena alongside our paper.