Goto

Collaborating Authors

 Park, Hae Won


Medical Hallucinations in Foundation Models and Their Impact on Healthcare

arXiv.org Artificial Intelligence

Foundation Models that are capable of processing and generating multi-modal data have transformed AI's role in medicine. However, a key limitation of their reliability is hallucination, where inaccurate or fabricated information can impact clinical decisions and patient safety. We define medical hallucination as any instance in which a model generates misleading medical content. This paper examines the unique characteristics, causes, and implications of medical hallucinations, with a particular focus on how these errors manifest themselves in real-world clinical scenarios. Our contributions include (1) a taxonomy for understanding and addressing medical hallucinations, (2) benchmarking models using medical hallucination dataset and physician-annotated LLM responses to real medical cases, providing direct insight into the clinical impact of hallucinations, and (3) a multi-national clinician survey on their experiences with medical hallucinations. Our results reveal that inference techniques such as Chain-of-Thought (CoT) and Search Augmented Generation can effectively reduce hallucination rates. However, despite these improvements, non-trivial levels of hallucination persist. These findings underscore the ethical and practical imperative for robust detection and mitigation strategies, establishing a foundation for regulatory policies that prioritize patient safety and maintain clinical integrity as AI becomes more integrated into healthcare. The feedback from clinicians highlights the urgent need for not only technical advances but also for clearer ethical and regulatory guidelines to ensure patient safety. A repository organizing the paper resources, summaries, and additional information is available at https://github.com/mitmedialab/medical hallucination.


Social Robots as Social Proxies for Fostering Connection and Empathy Towards Humanity

arXiv.org Artificial Intelligence

Despite living in an increasingly connected world, social isolation is a prevalent issue today. While social robots have been explored as tools to enhance social connection through companionship, their potential as asynchronous social platforms for fostering connection towards humanity has received less attention. In this work, we introduce the design of a social support companion that facilitates the exchange of emotionally relevant stories and scaffolds reflection to enhance feelings of connection via five design dimensions. We investigate how social robots can serve as "social proxies" facilitating human stories, passing stories from other human narrators to the user. To this end, we conduct a real-world deployment of 40 robot stations in users' homes over the course of two weeks. Through thematic analysis of user interviews, we find that social proxy robots can foster connection towards other people's experiences via mechanisms such as identifying connections across stories or offering diverse perspectives. We present design guidelines from our study insights on the use of social robot systems that serve as social platforms to enhance human empathy and connection.


A Demonstration of Adaptive Collaboration of Large Language Models for Medical Decision-Making

arXiv.org Artificial Intelligence

Medical Decision-Making (MDM) is a multi-faceted process that requires clinicians to assess complex multi-modal patient data patient, often collaboratively. Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data. However, single-agent are often ill-suited for nuanced medical contexts requiring adaptable, collaborative problem-solving. Our MDAgents addresses this need by dynamically assigning collaboration structures to LLMs based on task complexity, mimicking real-world clinical collaboration and decision-making. This framework improves diagnostic accuracy and supports adaptive responses in complex, real-world medical scenarios, making it a valuable tool for clinicians in various healthcare settings, and at the same time, being more efficient in terms of computing cost than static multi-agent decision making methods.


HEART-felt Narratives: Tracing Empathy and Narrative Style in Personal Stories with LLMs

arXiv.org Artificial Intelligence

Empathy serves as a cornerstone in enabling prosocial behaviors, and can be evoked through sharing of personal experiences in stories. While empathy is influenced by narrative content, intuitively, people respond to the way a story is told as well, through narrative style. Yet the relationship between empathy and narrative style is not fully understood. In this work, we empirically examine and quantify this relationship between style and empathy using LLMs and large-scale crowdsourcing studies. We introduce a novel, theory-based taxonomy, HEART (Human Empathy and Narrative Taxonomy) that delineates elements of narrative style that can lead to empathy with the narrator of a story. We establish the performance of LLMs in extracting narrative elements from HEART, showing that prompting with our taxonomy leads to reasonable, human-level annotations beyond what prior lexicon-based methods can do. To show empirical use of our taxonomy, we collect a dataset of empathy judgments of stories via a large-scale crowdsourcing study with N=2,624 participants. We show that narrative elements extracted via LLMs, in particular, vividness of emotions and plot volume, can elucidate the pathways by which narrative style cultivates empathy towards personal stories. Our work suggests that such models can be used for narrative analyses that lead to human-centered social and behavioral insights.


EmpathicStories++: A Multimodal Dataset for Empathy towards Personal Experiences

arXiv.org Artificial Intelligence

Modeling empathy is a complex endeavor that is rooted in interpersonal and experiential dimensions of human interaction, and remains an open problem within AI. Existing empathy datasets fall short in capturing the richness of empathy responses, often being confined to in-lab or acted scenarios, lacking longitudinal data, and missing self-reported labels. We introduce a new multimodal dataset for empathy during personal experience sharing: the EmpathicStories++ dataset (https://mitmedialab.github.io/empathic-stories-multimodal/) containing 53 hours of video, audio, and text data of 41 participants sharing vulnerable experiences and reading empathically resonant stories with an AI agent. EmpathicStories++ is the first longitudinal dataset on empathy, collected over a month-long deployment of social robots in participants' homes, as participants engage in natural, empathic storytelling interactions with AI agents. We then introduce a novel task of predicting individuals' empathy toward others' stories based on their personal experiences, evaluated in two contexts: participants' own personal shared story context and their reflections on stories they read. We benchmark this task using state-of-the-art models to pave the way for future improvements in contextualized and longitudinal empathy modeling. Our work provides a valuable resource for further research in developing empathetic AI systems and understanding the intricacies of human empathy within genuine, real-world settings.


Adaptive Collaboration Strategy for LLMs in Medical Decision Making

arXiv.org Artificial Intelligence

Foundation models have become invaluable in advancing the medical field. Despite their promise, the strategic deployment of LLMs for effective utility in complex medical tasks remains an open question. Our novel framework, Medical Decision-making Agents (MDAgents) aims to address this gap by automatically assigning the effective collaboration structure for LLMs. Assigned solo or group collaboration structure is tailored to the complexity of the medical task at hand, emulating real-world medical decision making processes. We evaluate our framework and baseline methods with state-of-the-art LLMs across a suite of challenging medical benchmarks: MedQA, MedMCQA, PubMedQA, DDXPlus, PMC-VQA, Path-VQA, and MedVidQA, achieving the best performance in 5 out of 7 benchmarks that require an understanding of multi-modal medical reasoning. Ablation studies reveal that MDAgents excels in adapting the number of collaborating agents to optimize efficiency and accuracy, showcasing its robustness in diverse scenarios. We also explore the dynamics of group consensus, offering insights into how collaborative agents could behave in complex clinical team dynamics. Our code can be found at https://github.com/mitmedialab/MDAgents.


Improving Dialogue Agents by Decomposing One Global Explicit Annotation with Local Implicit Multimodal Feedback

arXiv.org Artificial Intelligence

We describe an approach for aligning an LLM-based dialogue agent based on global (i.e., dialogue-level) rewards, while also taking into account naturally-occurring multimodal signals. At a high level, our approach (dubbed GELI) learns a local, turn-level reward model by decomposing the human-provided Global Explicit (GE) session-level reward, using Local Implicit (LI) multimodal reward signals to crossmodally shape the reward decomposition step. This decomposed reward model is then used as part of the standard RHLF pipeline improve an LLM-based dialog agent. We run quantitative and qualitative human studies to evaluate the performance of our GELI approach, and find that it shows consistent improvements across various conversational metrics compared to baseline methods.


Health-LLM: Large Language Models for Health Prediction via Wearable Sensor Data

arXiv.org Artificial Intelligence

Large language models (LLMs) are capable of many natural language tasks, yet they are far from perfect. In health applications, grounding and interpreting domain-specific and non-linguistic data is important. This paper investigates the capacity of LLMs to deliver multi-modal health predictions based on contextual information (e.g. user demographics, health knowledge) and physiological data (e.g. resting heart rate, sleep minutes). We present a comprehensive evaluation of eight state-of-the-art LLMs with diverse prompting and fine-tuning techniques on six public health datasets (PM-Data, LifeSnaps, GLOBEM, AW_FB, MIT-BIH & MIMIC-III). Our experiments cover thirteen consumer health prediction tasks in mental health, activity, metabolic, sleep, and cardiac assessment. Our fine-tuned model, Health-Alpaca exhibits comparable performance to larger models (GPT-3.5 and GPT-4), achieving the best performance in 5 out of 13 tasks. Ablation studies highlight the effectiveness of context enhancement strategies, and generalization capability of the fine-tuned models across training datasets and the size of training samples. Notably, we observe that our context enhancement can yield up to 23.8% improvement in performance. While constructing contextually rich prompts (combining user context, health knowledge and temporal information) exhibits synergistic improvement, the inclusion of health knowledge context in prompts significantly enhances overall performance.


Integrating Flow Theory and Adaptive Robot Roles: A Conceptual Model of Dynamic Robot Role Adaptation for the Enhanced Flow Experience in Long-term Multi-person Human-Robot Interactions

arXiv.org Artificial Intelligence

In this paper, we introduce a novel conceptual model for a robot's behavioral adaptation in its long-term interaction with humans, integrating dynamic robot role adaptation with principles of flow experience from psychology. This conceptualization introduces a hierarchical interaction objective grounded in the flow experience, serving as the overarching adaptation goal for the robot. This objective intertwines both cognitive and affective sub-objectives and incorporates individual and group-level human factors. The dynamic role adaptation approach is a cornerstone of our model, highlighting the robot's ability to fluidly adapt its support roles - from leader to follower - with the aim of maintaining equilibrium between activity challenge and user skill, thereby fostering the user's optimal flow experiences. Moreover, this work delves into a comprehensive exploration of the limitations and potential applications of our proposed conceptualization. Our model places a particular emphasis on the multi-person HRI paradigm, a dimension of HRI that is both under-explored and challenging. In doing so, we aspire to extend the applicability and relevance of our conceptualization within the HRI field, contributing to the future development of adaptive social robots capable of sustaining long-term interactions with humans.


Modeling Empathic Similarity in Personal Narratives

arXiv.org Artificial Intelligence

The most meaningful connections between people are often fostered through expression of shared vulnerability and emotional experiences in personal narratives. We introduce a new task of identifying similarity in personal stories based on empathic resonance, i.e., the extent to which two people empathize with each others' experiences, as opposed to raw semantic or lexical similarity, as has predominantly been studied in NLP. Using insights from social psychology, we craft a framework that operationalizes empathic similarity in terms of three key features of stories: main events, emotional trajectories, and overall morals or takeaways. We create EmpathicStories, a dataset of 1,500 personal stories annotated with our empathic similarity features, and 2,000 pairs of stories annotated with empathic similarity scores. Using our dataset, we fine-tune a model to compute empathic similarity of story pairs, and show that this outperforms semantic similarity models on automated correlation and retrieval metrics. Through a user study with 150 participants, we also assess the effect our model has on retrieving stories that users empathize with, compared to naive semantic similarity-based retrieval, and find that participants empathized significantly more with stories retrieved by our model. Our work has strong implications for the use of empathy-aware models to foster human connection and empathy between people.