Goto

Collaborating Authors

 Parekh, Vishwa S.


Towards Fair Medical AI: Adversarial Debiasing of 3D CT Foundation Embeddings

arXiv.org Artificial Intelligence

Self-supervised learning has revolutionized medical imaging by enabling efficient and generalizable feature extraction from large-scale unlabeled datasets. Recently, self-supervised foundation models have been extended to three-dimensional (3D) computed tomography (CT) data, generating compact, information-rich embeddings with 1408 features that achieve state-of-the-art performance on downstream tasks such as intracranial hemorrhage detection and lung cancer risk forecasting. However, these embeddings have been shown to encode demographic information, such as age, sex, and race, which poses a significant risk to the fairness of clinical applications. In this work, we propose a Variation Autoencoder (VAE) based adversarial debiasing framework to transform these embeddings into a new latent space where demographic information is no longer encoded, while maintaining the performance of critical downstream tasks. We validated our approach on the NLST lung cancer screening dataset, demonstrating that the debiased embeddings effectively eliminate multiple encoded demographic information and improve fairness without compromising predictive accuracy for lung cancer risk at 1-year and 2-year intervals. Additionally, our approach ensures the embeddings are robust against adversarial bias attacks. These results highlight the potential of adversarial debiasing techniques to ensure fairness and equity in clinical applications of self-supervised 3D CT embeddings, paving the way for their broader adoption in unbiased medical decision-making. The code is available at https://github.com/


Demographic Predictability in 3D CT Foundation Embeddings

arXiv.org Artificial Intelligence

Self-supervised foundation models have recently been successfully extended to encode three-dimensional (3D) computed tomography (CT) images, with excellent performance across several downstream tasks, such as intracranial hemorrhage detection and lung cancer risk forecasting. However, as self-supervised models learn from complex data distributions, questions arise concerning whether these embeddings capture demographic information, such as age, sex, or race. Using the National Lung Screening Trial (NLST) dataset, which contains 3D CT images and demographic data, we evaluated a range of classifiers: softmax regression, linear regression, linear support vector machine, random forest, and decision tree, to predict sex, race, and age of the patients in the images. Our results indicate that the embeddings effectively encoded age and sex information, with a linear regression model achieving a root mean square error (RMSE) of 3.8 years for age prediction and a softmax regression model attaining an AUC of 0.998 for sex classification. Race prediction was less effective, with an AUC of 0.878. These findings suggest a detailed exploration into the information encoded in self-supervised learning frameworks is needed to help ensure fair, responsible, and patient privacy-protected healthcare AI.


Expanding the Horizon: Enabling Hybrid Quantum Transfer Learning for Long-Tailed Chest X-Ray Classification

arXiv.org Artificial Intelligence

Quantum machine learning (QML) has the potential for improving the multi-label classification of rare, albeit critical, diseases in large-scale chest x-ray (CXR) datasets due to theoretical quantum advantages over classical machine learning (CML) in sample efficiency and generalizability. While prior literature has explored QML with CXRs, it has focused on binary classification tasks with small datasets due to limited access to quantum hardware and computationally expensive simulations. To that end, we implemented a Jax-based framework that enables the simulation of medium-sized qubit architectures with significant improvements in wall-clock time over current software offerings. We evaluated the performance of our Jax-based framework in terms of efficiency and performance for hybrid quantum transfer learning for long-tailed classification across 8, 14, and 19 disease labels using large-scale CXR datasets. The Jax-based framework resulted in up to a 58% and 95% speed-up compared to PyTorch and TensorFlow implementations, respectively. However, compared to CML, QML demonstrated slower convergence and an average AUROC of 0.70, 0.73, and 0.74 for the classification of 8, 14, and 19 CXR disease labels. In comparison, the CML models had an average AUROC of 0.77, 0.78, and 0.80 respectively. In conclusion, our work presents an accessible implementation of hybrid quantum transfer learning for long-tailed CXR classification with a computationally efficient Jax-based framework.


Improving Multi-Center Generalizability of GAN-Based Fat Suppression using Federated Learning

arXiv.org Artificial Intelligence

Generative Adversarial Network (GAN)-based synthesis of fat suppressed (FS) MRIs from non-FS proton density sequences has the potential to accelerate acquisition of knee MRIs. However, GANs trained on single-site data have poor generalizability to external data. We show that federated learning can improve multi-center generalizability of GANs for synthesizing FS MRIs, while facilitating privacy-preserving multi-institutional collaborations.


Anytime, Anywhere, Anyone: Investigating the Feasibility of Segment Anything Model for Crowd-Sourcing Medical Image Annotations

arXiv.org Artificial Intelligence

Curating annotations for medical image segmentation is a labor-intensive and time-consuming task that requires domain expertise, resulting in "narrowly" focused deep learning (DL) models with limited translational utility. Recently, foundation models like the Segment Anything Model (SAM) have revolutionized semantic segmentation with exceptional zero-shot generalizability across various domains, including medical imaging, and hold a lot of promise for streamlining the annotation process. However, SAM has yet to be evaluated in a crowd-sourced setting to curate annotations for training 3D DL segmentation models. In this work, we explore the potential of SAM for crowd-sourcing "sparse" annotations from non-experts to generate "dense" segmentation masks for training 3D nnU-Net models, a state-of-the-art DL segmentation model. Our results indicate that while SAM-generated annotations exhibit high mean Dice scores compared to ground-truth annotations, nnU-Net models trained on SAM-generated annotations perform significantly worse than nnU-Net models trained on ground-truth annotations ($p<0.001$, all).


Hidden in Plain Sight: Undetectable Adversarial Bias Attacks on Vulnerable Patient Populations

arXiv.org Artificial Intelligence

The proliferation of artificial intelligence (AI) in radiology has shed light on the risk of deep learning (DL) models exacerbating clinical biases towards vulnerable patient populations. While prior literature has focused on quantifying biases exhibited by trained DL models, demographically targeted adversarial bias attacks on DL models and its implication in the clinical environment remains an underexplored field of research in medical imaging. In this work, we demonstrate that demographically targeted label poisoning attacks can introduce adversarial underdiagnosis bias in DL models and degrade performance on underrepresented groups without impacting overall model performance. Moreover, our results across multiple performance metrics and demographic groups like sex, age, and their intersectional subgroups indicate that a group's vulnerability to undetectable adversarial bias attacks is directly correlated with its representation in the model's training data.


Surgical Aggregation: Federated Class-Heterogeneous Learning

arXiv.org Artificial Intelligence

Abstract-- The release of numerous chest x-ray datasets has spearheaded the development of deep learning models with expert-level performance. However, they have limited interoperability due to class-heterogeneity - a result of inconsistent labeling schemes and partial annotations. Therefore, it is challenging to leverage these datasets in aggregate to train models with a complete representation of abnormalities that may occur within the thorax. In this work, we propose surgical aggregation, a federated learning framework for aggregating knowledge from class-heterogeneous datasets and learn a model that can simultaneously predict the presence of all disease labels present across the datasets. We evaluate our method using simulated and real-world class-heterogeneous datasets across both independent and identically distributed (iid) and non-iid settings. Our results show that surgical aggregation outperforms current methods, has better generalizability, and is a crucial first step towards tackling class-heterogeneity in federated learning to facilitate the development of clinically-useful models using previously non-interoperable chest x-ray datasets.


ISLE: An Intelligent Streaming Framework for High-Throughput AI Inference in Medical Imaging

arXiv.org Artificial Intelligence

As the adoption of Artificial Intelligence (AI) systems within the clinical environment grows, limitations in bandwidth and compute can create communication bottlenecks when streaming imaging data, leading to delays in patient care and increased cost. As such, healthcare providers and AI vendors will require greater computational infrastructure, therefore dramatically increasing costs. To that end, we developed ISLE, an intelligent streaming framework for high-throughput, compute- and bandwidth- optimized, and cost effective AI inference for clinical decision making at scale. In our experiments, ISLE on average reduced data transmission by 98.02% and decoding time by 98.09%, while increasing throughput by 2,730%. We show that ISLE results in faster turnaround times, and reduced overall cost of data, transmission, and compute, without negatively impacting clinical decision making using AI systems.


Text2Cohort: Facilitating Intuitive Access to Biomedical Data with Natural Language Cohort Discovery

arXiv.org Artificial Intelligence

The Imaging Data Commons (IDC) is a cloud-based database that provides researchers with open access to cancer imaging data, with the goal of facilitating collaboration. However, cohort discovery within the IDC database has a significant technical learning curve. Recently, large language models (LLM) have demonstrated exceptional utility for natural language processing tasks. We developed Text2Cohort, a LLM-powered toolkit to facilitate user-friendly natural language cohort discovery in the IDC. Our method translates user input into IDC queries using grounding techniques and returns the query's response. We evaluate Text2Cohort on 50 natural language inputs, from information extraction to cohort discovery. Our toolkit successfully generated responses with an 88% accuracy and 0.94 F1 score. We demonstrate that Text2Cohort can enable researchers to discover and curate cohorts on IDC with high levels of accuracy using natural language in a more intuitive and user-friendly way.


One Copy Is All You Need: Resource-Efficient Streaming of Medical Imaging Data at Scale

arXiv.org Artificial Intelligence

Large-scale medical imaging datasets have accelerated development of artificial intelligence tools for clinical decision support. However, the large size of these datasets is a bottleneck for users with limited storage and bandwidth. Many users may not even require such large datasets as AI models are often trained on lower resolution images. If users could directly download at their desired resolution, storage and bandwidth requirements would significantly decrease. However, it is impossible to anticipate every users' requirements and impractical to store the data at multiple resolutions. What if we could store images at a single resolution but send them at different ones? We propose MIST, an open-source framework to operationalize progressive resolution for streaming medical images at multiple resolutions from a single high-resolution copy. We demonstrate that MIST can dramatically reduce imaging infrastructure inefficiencies for hosting and streaming medical images by >90%, while maintaining diagnostic quality for deep learning applications.