Papa, João Paulo
A Review on Scientific Knowledge Extraction using Large Language Models in Biomedical Sciences
Garcia, Gabriel Lino, Manesco, João Renato Ribeiro, Paiola, Pedro Henrique, Miranda, Lucas, de Salvo, Maria Paola, Papa, João Paulo
The rapid advancement of large language models (LLMs) has opened new boundaries in the extraction and synthesis of medical knowledge, particularly within evidence synthesis. This paper reviews the state-of-the-art applications of LLMs in the biomedical domain, exploring their effectiveness in automating complex tasks such as evidence synthesis and data extraction from a biomedical corpus of documents. While LLMs demonstrate remarkable potential, significant challenges remain, including issues related to hallucinations, contextual understanding, and the ability to generalize across diverse medical tasks. We highlight critical gaps in the current research literature, particularly the need for unified benchmarks to standardize evaluations and ensure reliability in real-world applications. In addition, we propose directions for future research, emphasizing the integration of state-of-the-art techniques such as retrieval-augmented generation (RAG) to enhance LLM performance in evidence synthesis. By addressing these challenges and utilizing the strengths of LLMs, we aim to improve access to medical literature and facilitate meaningful discoveries in healthcare.
Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation
Paiola, Pedro Henrique, Garcia, Gabriel Lino, Manesco, João Renato Ribeiro, Roder, Mateus, Rodrigues, Douglas, Papa, João Paulo
This study evaluates the performance of large language models (LLMs) as medical agents in Portuguese, aiming to develop a reliable and relevant virtual assistant for healthcare professionals. The HealthCareMagic-100k-en and MedQuAD datasets, translated from English using GPT-3.5, were used to fine-tune the ChatBode-7B model using the PEFT-QLoRA method. The InternLM2 model, with initial training on medical data, presented the best overall performance, with high precision and adequacy in metrics such as accuracy, completeness and safety. However, DrBode models, derived from ChatBode, exhibited a phenomenon of catastrophic forgetting of acquired medical knowledge. Despite this, these models performed frequently or even better in aspects such as grammaticality and coherence. A significant challenge was low inter-rater agreement, highlighting the need for more robust assessment protocols. This work paves the way for future research, such as evaluating multilingual models specific to the medical field, improving the quality of training data, and developing more consistent evaluation methodologies for the medical field.
BioNeRF: Biologically Plausible Neural Radiance Fields for View Synthesis
Passos, Leandro A., Rodrigues, Douglas, Jodas, Danilo, Costa, Kelton A. P., Papa, João Paulo
This paper presents BioNeRF, a biologically plausible architecture that models scenes in a 3D representation and synthesizes new views through radiance fields. Since NeRF relies on the network weights to store the scene's 3-dimensional representation, BioNeRF implements a cognitive-inspired mechanism that fuses inputs from multiple sources into a memory-like structure, improving the storing capacity and extracting more intrinsic and correlated information. BioNeRF also mimics a behavior observed in pyramidal cells concerning contextual information, in which the memory is provided as the context and combined with the inputs of two subsequent neural models, one responsible for producing the volumetric densities and the other the colors used to render the scene. Experimental results show that BioNeRF outperforms state-of-the-art results concerning a quality measure that encodes human perception in two datasets: real-world images and synthetic data.
Introducing Bode: A Fine-Tuned Large Language Model for Portuguese Prompt-Based Task
Garcia, Gabriel Lino, Paiola, Pedro Henrique, Morelli, Luis Henrique, Candido, Giovani, Júnior, Arnaldo Cândido, Jodas, Danilo Samuel, Afonso, Luis C. S., Guilherme, Ivan Rizzo, Penteado, Bruno Elias, Papa, João Paulo
Large Language Models (LLMs) are increasingly bringing advances to Natural Language Processing. However, low-resource languages, those lacking extensive prominence in datasets for various NLP tasks, or where existing datasets are not as substantial, such as Portuguese, already obtain several benefits from LLMs, but not to the same extent. LLMs trained on multilingual datasets normally struggle to respond to prompts in Portuguese satisfactorily, presenting, for example, code switching in their responses. This work proposes a fine-tuned LLaMA 2-based model for Portuguese prompts named Bode in two versions: 7B and 13B. We evaluate the performance of this model in classification tasks using the zero-shot approach with in-context learning, and compare it with other LLMs. Our main contribution is to bring an LLM with satisfactory results in the Portuguese language, as well as to provide a model that is free for research or commercial purposes.
Feature Selection and Hyperparameter Fine-tuning in Artificial Neural Networks for Wood Quality Classification
Roder, Mateus, Passos, Leandro Aparecido, Papa, João Paulo, Rossi, André Luis Debiaso
Quality classification of wood boards is an essential task in the sawmill industry, which is still usually performed by human operators in small to median companies in developing countries. Machine learning algorithms have been successfully employed to investigate the problem, offering a more affordable alternative compared to other solutions. However, such approaches usually present some drawbacks regarding the proper selection of their hyperparameters. Moreover, the models are susceptible to the features extracted from wood board images, which influence the induction of the model and, consequently, its generalization power. Therefore, in this paper, we investigate the problem of simultaneously tuning the hyperparameters of an artificial neural network (ANN) as well as selecting a subset of characteristics that better describes the wood board quality. Experiments were conducted over a private dataset composed of images obtained from a sawmill industry and described using different feature descriptors. The predictive performance of the model was compared against five baseline methods as well as a random search, performing either ANN hyperparameter tuning and feature selection. Experimental results suggest that hyperparameters should be adjusted according to the feature set, or the features should be selected considering the hyperparameter values. In summary, the best predictive performance, i.e., a balanced accuracy of $0.80$, was achieved in two distinct scenarios: (i) performing only feature selection, and (ii) performing both tasks concomitantly. Thus, we suggest that at least one of the two approaches should be considered in the context of industrial applications.
Facial Point Graphs for Amyotrophic Lateral Sclerosis Identification
Gomes, Nícolas Barbosa, Yoshida, Arissa, Roder, Mateus, de Oliveira, Guilherme Camargo, Papa, João Paulo
Identifying Amyotrophic Lateral Sclerosis (ALS) in its early stages is essential for establishing the beginning of treatment, enriching the outlook, and enhancing the overall well-being of those affected individuals. However, early diagnosis and detecting the disease's signs is not straightforward. A simpler and cheaper way arises by analyzing the patient's facial expressions through computational methods. When a patient with ALS engages in specific actions, e.g., opening their mouth, the movement of specific facial muscles differs from that observed in a healthy individual. This paper proposes Facial Point Graphs to learn information from the geometry of facial images to identify ALS automatically. The experimental outcomes in the Toronto Neuroface dataset show the proposed approach outperformed state-of-the-art results, fostering promising developments in the area.
A survey on text generation using generative adversarial networks
de Rosa, Gustavo Henrique, Papa, João Paulo
This work presents a thorough review concerning recent studies and text generation advancements using Generative Adversarial Networks. The usage of adversarial learning for text generation is promising as it provides alternatives to generate the so-called "natural" language. Nevertheless, adversarial text generation is not a simple task as its foremost architecture, the Generative Adversarial Networks, were designed to cope with continuous information (image) instead of discrete data (text). Thus, most works are based on three possible options, i.e., Gumbel-Softmax differentiation, Reinforcement Learning, and modified training objectives. All alternatives are reviewed in this survey as they present the most recent approaches for generating text using adversarial-based techniques. The selected works were taken from renowned databases, such as Science Direct, IEEEXplore, Springer, Association for Computing Machinery, and arXiv, whereas each selected work has been critically analyzed and assessed to present its objective, methodology, and experimental results.
Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
da Silva, Vinícius Camargo, Papa, João Paulo, da Costa, Kelton Augusto Pontara
Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.
Improving Pre-Trained Weights Through Meta-Heuristics Fine-Tuning
de Rosa, Gustavo H., Roder, Mateus, Papa, João Paulo, Santos, Claudio F. G. dos
Machine Learning algorithms have been extensively researched throughout the last decade, leading to unprecedented advances in a broad range of applications, such as image classification and reconstruction, object recognition, and text categorization. Nonetheless, most Machine Learning algorithms are trained via derivative-based optimizers, such as the Stochastic Gradient Descent, leading to possible local optimum entrapments and inhibiting them from achieving proper performances. A bio-inspired alternative to traditional optimization techniques, denoted as meta-heuristic, has received significant attention due to its simplicity and ability to avoid local optimums imprisonment. In this work, we propose to use meta-heuristic techniques to fine-tune pre-trained weights, exploring additional regions of the search space, and improving their effectiveness. The experimental evaluation comprises two classification tasks (image and text) and is assessed under four literature datasets. Experimental results show nature-inspired algorithms' capacity in exploring the neighborhood of pre-trained weights, achieving superior results than their counterpart pre-trained architectures. Additionally, a thorough analysis of distinct architectures, such as Multi-Layer Perceptron and Recurrent Neural Networks, attempts to visualize and provide more precise insights into the most critical weights to be fine-tuned in the learning process.
A Review of Deep Learning-based Approaches for Deepfake Content Detection
Passos, Leandro A., Jodas, Danilo, da Costa, Kelton A. P., Júnior, Luis A. Souza, Colombo, Danilo, Papa, João Paulo
The fast-spreading information over the internet is essential to support the rapid supply of numerous public utility services and entertainment to users. Social networks and online media paved the way for modern, timely-communication-fashion and convenient access to all types of information. However, it also provides new chances for ill use of the massive amount of available data, such as spreading fake content to manipulate public opinion. Detection of counterfeit content has raised attention in the last few years for the advances in deepfake generation. The rapid growth of machine learning techniques, particularly deep learning, can predict fake content in several application domains, including fake image and video manipulation. This paper presents a comprehensive review of recent studies for deepfake content detection using deep learning-based approaches. We aim to broaden the state-of-the-art research by systematically reviewing the different categories of fake content detection. Furthermore, we report the advantages and drawbacks of the examined works and future directions towards the issues and shortcomings still unsolved on deepfake detection.