Goto

Collaborating Authors

 Ong, Cheng Soon


Squared families: Searching beyond regular probability models

arXiv.org Artificial Intelligence

We introduce squared families, which are families of probability densities obtained by squaring a linear transformation of a statistic. Squared families are singular, however their singularity can easily be handled so that they form regular models. After handling the singularity, squared families possess many convenient properties. Their Fisher information is a conformal transformation of the Hessian metric induced from a Bregman generator. The Bregman generator is the normalising constant, and yields a statistical divergence on the family. The normalising constant admits a helpful parameter-integral factorisation, meaning that only one parameter-independent integral needs to be computed for all normalising constants in the family, unlike in exponential families. Finally, the squared family kernel is the only integral that needs to be computed for the Fisher information, statistical divergence and normalising constant. We then describe how squared families are special in the broader class of $g$-families, which are obtained by applying a sufficiently regular function $g$ to a linear transformation of a statistic. After removing special singularities, positively homogeneous families and exponential families are the only $g$-families for which the Fisher information is a conformal transformation of the Hessian metric, where the generator depends on the parameter only through the normalising constant. Even-order monomial families also admit parameter-integral factorisations, unlike exponential families. We study parameter estimation and density estimation in squared families, in the well-specified and misspecified settings. We use a universal approximation property to show that squared families can learn sufficiently well-behaved target densities at a rate of $\mathcal{O}(N^{-1/2})+C n^{-1/4}$, where $N$ is the number of datapoints, $n$ is the number of parameters, and $C$ is some constant.


Generalization Certificates for Adversarially Robust Bayesian Linear Regression

arXiv.org Machine Learning

Adversarial robustness of machine learning models is critical to ensuring reliable performance under data perturbations. Recent progress has been on point estimators, and this paper considers distributional predictors. First, using the link between exponential families and Bregman divergences, we formulate an adversarial Bregman divergence loss as an adversarial negative log-likelihood. Using the geometric properties of Bregman divergences, we compute the adversarial perturbation for such models in closed-form. Second, under such losses, we introduce \emph{adversarially robust posteriors}, by exploiting the optimization-centric view of generalized Bayesian inference. Third, we derive the \emph{first} rigorous generalization certificates in the context of an adversarial extension of Bayesian linear regression by leveraging the PAC-Bayesian framework. Finally, experiments on real and synthetic datasets demonstrate the superior robustness of the derived adversarially robust posterior over Bayes posterior, and also validate our theoretical guarantees.


Indirect Query Bayesian Optimization with Integrated Feedback

arXiv.org Artificial Intelligence

We develop the framework of Indirect Query Bayesian Optimization (IQBO), a new class of Bayesian optimization problems where the integrated feedback is given via a conditional expectation of the unknown function $f$ to be optimized. The underlying conditional distribution can be unknown and learned from data. The goal is to find the global optimum of $f$ by adaptively querying and observing in the space transformed by the conditional distribution. This is motivated by real-world applications where one cannot access direct feedback due to privacy, hardware or computational constraints. We propose the Conditional Max-Value Entropy Search (CMES) acquisition function to address this novel setting, and propose a hierarchical search algorithm to address the multi-resolution setting and improve the computational efficiency. We show regret bounds for our proposed methods and demonstrate the effectiveness of our approaches on simulated optimization tasks.


Fairness Evaluation with Item Response Theory

arXiv.org Artificial Intelligence

Item Response Theory (IRT) has been widely used in educational psychometrics to assess student ability, as well as the difficulty and discrimination of test questions. In this context, discrimination specifically refers to how effectively a question distinguishes between students of different ability levels, and it does not carry any connotation related to fairness. In recent years, IRT has been successfully used to evaluate the predictive performance of Machine Learning (ML) models, but this paper marks its first application in fairness evaluation. In this paper, we propose a novel Fair-IRT framework to evaluate a set of predictive models on a set of individuals, while simultaneously eliciting specific parameters, namely, the ability to make fair predictions (a feature of predictive models), as well as the discrimination and difficulty of individuals that affect the prediction results. Furthermore, we conduct a series of experiments to comprehensively understand the implications of these parameters for fairness evaluation. Detailed explanations for item characteristic curves (ICCs) are provided for particular individuals. We propose the flatness of ICCs to disentangle the unfairness between individuals and predictive models. The experiments demonstrate the effectiveness of this framework as a fairness evaluation tool. Two real-world case studies illustrate its potential application in evaluating fairness in both classification and regression tasks. Our paper aligns well with the Responsible Web track by proposing a Fair-IRT framework to evaluate fairness in ML models, which directly contributes to the development of a more inclusive, equitable, and trustworthy AI.


Exact, Fast and Expressive Poisson Point Processes via Squared Neural Families

arXiv.org Artificial Intelligence

We introduce squared neural Poisson point processes (SNEPPPs) by parameterising the intensity function by the squared norm of a two layer neural network. When the hidden layer is fixed and the second layer has a single neuron, our approach resembles previous uses of squared Gaussian process or kernel methods, but allowing the hidden layer to be learnt allows for additional flexibility. In many cases of interest, the integrated intensity function admits a closed form and can be computed in quadratic time in the number of hidden neurons. We enumerate a far more extensive number of such cases than has previously been discussed. Our approach is more memory and time efficient than naive implementations of squared or exponentiated kernel methods or Gaussian processes. Maximum likelihood and maximum a posteriori estimates in a reparameterisation of the final layer of the intensity function can be obtained by solving a (strongly) convex optimisation problem using projected gradient descent. We demonstrate SNEPPPs on real, and synthetic benchmarks, and provide a software implementation. https://github.com/RussellTsuchida/snefy


Squared Neural Families: A New Class of Tractable Density Models

arXiv.org Machine Learning

Flexible models for probability distributions are an essential ingredient in many machine learning tasks. We develop and investigate a new class of probability distributions, which we call a Squared Neural Family (SNEFY), formed by squaring the 2-norm of a neural network and normalising it with respect to a base measure. Following the reasoning similar to the well established connections between infinitely wide neural networks and Gaussian processes, we show that SNEFYs admit closed form normalising constants in many cases of interest, thereby resulting in flexible yet fully tractable density models. SNEFYs strictly generalise classical exponential families, are closed under conditioning, and have tractable marginal distributions. Their utility is illustrated on a variety of density estimation, conditional density estimation, and density estimation with missing data tasks.


Uncertainty Quantification of the Virial Black Hole Mass with Conformal Prediction

arXiv.org Artificial Intelligence

Precise measurements of the black hole mass are essential to gain insight on the black hole and host galaxy co-evolution. A direct measure of the black hole mass is often restricted to nearest galaxies and instead, an indirect method using the single-epoch virial black hole mass estimation is used for objects at high redshifts. However, this method is subjected to biases and uncertainties as it is reliant on the scaling relation from a small sample of local active galactic nuclei. In this study, we propose the application of conformalised quantile regression (CQR) to quantify the uncertainties of the black hole predictions in a machine learning setting. We compare CQR with various prediction interval techniques and demonstrated that CQR can provide a more useful prediction interval indicator. In contrast to baseline approaches for prediction interval estimation, we show that the CQR method provides prediction intervals that adjust to the black hole mass and its related properties. That is it yields a tighter constraint on the prediction interval (hence more certain) for a larger black hole mass, and accordingly, bright and broad spectral line width source. Using a combination of neural network model and CQR framework, the recovered virial black hole mass predictions and uncertainties are comparable to those measured from the Sloan Digital Sky Survey. The code is publicly available at https://github.com/yongsukyee/uncertain_blackholemass.


Factorized Fourier Neural Operators

arXiv.org Artificial Intelligence

We propose the Factorized Fourier Neural Operator (F-FNO), a learning-based approach for simulating partial differential equations (PDEs). Starting from a recently proposed Fourier representation of flow fields, the F-FNO bridges the performance gap between pure machine learning approaches to that of the best numerical or hybrid solvers. This is achieved with new representations - separable spectral layers and improved residual connections - and a combination of training strategies such as the Markov assumption, Gaussian noise, and cosine learning rate decay. On several challenging benchmark PDEs on regular grids, structured meshes, and point clouds, the F-FNO can scale to deeper networks and outperform both the FNO and the geo-FNO, reducing the error by 83% on the Navier-Stokes problem, 31% on the elasticity problem, 57% on the airfoil flow problem, and 60% on the plastic forging problem. Compared to the state-of-the-art pseudo-spectral method, the F-FNO can take a step size that is an order of magnitude larger in time and achieve an order of magnitude speedup to produce the same solution quality. For most real-world problems, the lack of a closed-form solution requires using computationally expensive numerical solvers, sometimes consuming millions of core hours and terabytes of storage (Hosseini et al., 2016). Recently, machine learning methods have been proposed to replace part (Kochkov et al., 2021) or all (Li et al., 2021a) of a numerical solver. Of particular interest are Fourier Neural Operators (FNOs) (Li et al., 2021a), which are neural networks that can be trained end-to-end to learn a mapping between infinite-dimensional function spaces. The FNO can take a step size much bigger than is allowed in numerical methods, can perform super-resolution, and can be trained on many PDEs with the same underlying architecture. A more recent variant, dubbed geo-FNO (Li et al., 2022), can handle irregular geometries such as structured meshes and point clouds. However, this first generation of neural operators suffers from stability issues.


Quantile Bandits for Best Arms Identification

arXiv.org Artificial Intelligence

We consider a variant of the best arm identification task in stochastic multi-armed bandits. Motivated by risk-averse decision-making problems, our goal is to identify a set of $m$ arms with the highest $\tau$-quantile values within a fixed budget. We prove asymmetric two-sided concentration inequalities for order statistics and quantiles of random variables that have non-decreasing hazard rate, which may be of independent interest. With these inequalities, we analyse a quantile version of Successive Accepts and Rejects (Q-SAR). We derive an upper bound for the probability of arm misidentification, the first justification of a quantile based algorithm for fixed budget multiple best arms identification. We show illustrative experiments for best arm identification.


Deep equilibrium models as estimators for continuous latent variables

arXiv.org Artificial Intelligence

Principal Component Analysis (PCA) and its exponential family extensions have three components: observations, latents and parameters of a linear transformation. We consider a generalised setting where the canonical parameters of the exponential family are a nonlinear transformation of the latents. We show explicit relationships between particular neural network architectures and the corresponding statistical models. We find that deep equilibrium models -- a recently introduced class of implicit neural networks -- solve maximum a-posteriori (MAP) estimates for the latents and parameters of the transformation. Our analysis provides a systematic way to relate activation functions, dropout, and layer structure, to statistical assumptions about the observations, thus providing foundational principles for unsupervised DEQs. For hierarchical latents, individual neurons can be interpreted as nodes in a deep graphical model. Our DEQ feature maps are end-to-end differentiable, enabling fine-tuning for downstream tasks.