Goto

Collaborating Authors

 Okada, Masato


Sequential Experimental Design for Spectral Measurement: Active Learning Using a Parametric Model

arXiv.org Artificial Intelligence

In this study, we demonstrate a sequential experimental design for spectral measurements by active learning using parametric models as predictors. In spectral measurements, it is necessary to reduce the measurement time because of sample fragility and high energy costs. To improve the efficiency of experiments, sequential experimental designs are proposed, in which the subsequent measurement is designed by active learning using the data obtained before the measurement. Conventionally, parametric models are employed in data analysis; when employed for active learning, they are expected to afford a sequential experimental design that improves the accuracy of data analysis. However, due to the complexity of the formulas, a sequential experimental design using general parametric models has not been realized. Therefore, we applied Bayesian inference-based data analysis using the exchange Monte Carlo method to realize a sequential experimental design with general parametric models. In this study, we evaluated the effectiveness of the proposed method by applying it to Bayesian spectral deconvolution and Bayesian Hamiltonian selection in X-ray photoelectron spectroscopy. Using numerical experiments with artificial data, we demonstrated that the proposed method improves the accuracy of model selection and parameter estimation while reducing the measurement time compared with the results achieved without active learning or with active learning using the Gaussian process regression.


Statistical Mechanical Analysis of Catastrophic Forgetting in Continual Learning with Teacher and Student Networks

arXiv.org Machine Learning

When a computational system continuously learns from an ever-changing environment, it rapidly forgets its past experiences. This phenomenon is called catastrophic forgetting. While a line of studies has been proposed with respect to avoiding catastrophic forgetting, most of the methods are based on intuitive insights into the phenomenon, and their performances have been evaluated by numerical experiments using benchmark datasets. Therefore, in this study, we provide the theoretical framework for analyzing catastrophic forgetting by using teacher-student learning. Teacher-student learning is a framework in which we introduce two neural networks: one neural network is a target function in supervised learning, and the other is a learning neural network. To analyze continual learning in the teacher-student framework, we introduce the similarity of the input distribution and the input-output relationship of the target functions as the similarity of tasks. In this theoretical framework, we also provide a qualitative understanding of how a single-layer linear learning neural network forgets tasks. Based on the analysis, we find that the network can avoid catastrophic forgetting when the similarity among input distributions is small and that of the input-output relationship of the target functions is large. The analysis also suggests that a system often exhibits a characteristic phenomenon called overshoot, which means that even if the learning network has once undergone catastrophic forgetting, it is possible that the network may perform reasonably well after further learning of the current task.


Effects of Synaptic Weight Diffusion on Learning in Decision Making Networks

Neural Information Processing Systems

When animals repeatedly choose actions from multiple alternatives, they can allocate their choices stochastically depending on past actions and outcomes. It is commonly assumed that this ability is achieved by modifications in synaptic weights related to decision making. Choice behavior has been empirically found to follow Herrnstein's matching law. Loewenstein & amp; Seung (2006) demonstrated that matching behavior is a steady state of learning in neural networks if the synaptic weights change proportionally to the covariance between reward and neural activities. However, their proof did not take into account the change in entire synaptic distributions.


Bayesian Spectral Deconvolution Based on Poisson Distribution: Bayesian Measurement and Virtual Measurement Analytics (VMA)

arXiv.org Machine Learning

In this paper, we propose a new method of Bayesian measurement for spectral deconvolution, which regresses spectral data into the sum of unimodal basis function such as Gaussian or Lorentzian functions. Bayesian measurement is a framework for considering not only the target physical model but also the measurement model as a probabilistic model, and enables us to estimate the parameter of a physical model with its confidence interval through a Bayesian posterior distribution given a measurement data set. The measurement with Poisson noise is one of the most effective system to apply our proposed method. Since the measurement time is strongly related to the signal-to-noise ratio for the Poisson noise model, Bayesian measurement with Poisson noise model enables us to clarify the relationship between the measurement time and the limit of estimation. In this study, we establish the probabilistic model with Poisson noise for spectral deconvolution. Bayesian measurement enables us to perform virtual and computer simulation for a certain measurement through the established probabilistic model. This property is called "Virtual Measurement Analytics(VMA)" in this paper. We also show that the relationship between the measurement time and the limit of estimation can be extracted by using the proposed method in a simulation of synthetic data and real data for XPS measurement of MoS$_2$.


Statistical mechanical analysis of sparse linear regression as a variable selection problem

arXiv.org Machine Learning

An algorithmic limit of compressed sensing or related variable-selection problems is analytically evaluated when a design matrix is given by an overcomplete random matrix. The replica method from statistical mechanics is employed to derive the result. The analysis is conducted through evaluation of the entropy, an exponential rate of the number of combinations of variables giving a specific value of fit error to given data which is assumed to be generated from a linear process using the design matrix. This yields the typical achievable limit of the fit error when solving a representative $\ell_0$ problem and includes the presence of unfavourable phase transitions preventing local search algorithms from reaching the minimum-error configuration. The associated phase diagrams are presented. A noteworthy outcome of the phase diagrams is, however, that there exists a wide parameter region where any phase transition is absent from the high temperature to the lowest temperature at which the minimum-error configuration or the ground state is reached. This implies that certain local search algorithms can find the ground state with moderate computational costs in that region. The theoretical evaluation of the entropy is confirmed by extensive numerical methods using the exchange Monte Carlo and the multi-histogram methods. Another numerical test based on a metaheuristic optimisation algorithm called simulated annealing is conducted, which well supports the theoretical predictions on the local search algorithms and we can find the ground state with high probability in polynomial time with respect to system size.


Concept Formation and Dynamics of Repeated Inference in Deep Generative Models

arXiv.org Machine Learning

Deep generative models are reported to be useful in broad applications including image generation. Repeated inference between data space and latent space in these models can denoise cluttered images and improve the quality of inferred results. However, previous studies only qualitatively evaluated image outputs in data space, and the mechanism behind the inference has not been investigated. The purpose of the current study is to numerically analyze changes in activity patterns of neurons in the latent space of a deep generative model called a "variational auto-encoder" (VAE). What kinds of inference dynamics the VAE demonstrates when noise is added to the input data are identified. The VAE embeds a dataset with clear cluster structures in the latent space and the center of each cluster of multiple correlated data points (memories) is referred as the concept. Our study demonstrated that transient dynamics of inference first approaches a concept, and then moves close to a memory. Moreover, the VAE revealed that the inference dynamics approaches a more abstract concept to the extent that the uncertainty of input data increases due to noise. It was demonstrated that by increasing the number of the latent variables, the trend of the inference dynamics to approach a concept can be enhanced, and the generalization ability of the VAE can be improved.


Exhaustive search for sparse variable selection in linear regression

arXiv.org Machine Learning

We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.


Statistical Mechanics of Node-perturbation Learning with Noisy Baseline

arXiv.org Machine Learning

Node-perturbation learning is a type of statistical gradient descent algorithm that can be applied to problems where the objective function is not explicitly formulated, including reinforcement learning. It estimates the gradient of an objective function by using the change in the object function in response to the perturbation. The value of the objective function for an unperturbed output is called a baseline. Cho et al. proposed node-perturbation learning with a noisy baseline. In this paper, we report on building the statistical mechanics of Cho's model and on deriving coupled differential equations of order parameters that depict learning dynamics. We also show how to derive the generalization error by solving the differential equations of order parameters. On the basis of the results, we show that Cho's results are also apply in general cases and show some general performances of Cho's model.


The topographic unsupervised learning of natural sounds in the auditory cortex

Neural Information Processing Systems

The computational modelling of the primary auditory cortex (A1) has been less fruitful than that of the primary visual cortex (V1) due to the less organized properties of A1. Greater disorder has recently been demonstrated for the tonotopy of A1 that has traditionally been considered to be as ordered as the retinotopy of V1. This disorder appears to be incongruous, given the uniformity of the neocortex; however, we hypothesized that both A1 and V1 would adopt an efficient coding strategy and that the disorder in A1 reflects natural sound statistics. To provide a computational model of the tonotopic disorder in A1, we used a model that was originally proposed for the smooth V1 map. In contrast to natural images, natural sounds exhibit distant correlations, which were learned and reflected in the disordered map. The auditory model predicted harmonic relationships among neighbouring A1 cells; furthermore, the same mechanism used to model V1 complex cells reproduced nonlinear responses similar to the pitch selectivity. These results contribute to the understanding of the sensory cortices of different modalities in a novel and integrated manner.


Effects of Synaptic Weight Diffusion on Learning in Decision Making Networks

Neural Information Processing Systems

When animals repeatedly choose actions from multiple alternatives, they can allocate their choices stochastically depending on past actions and outcomes. It is commonly assumed that this ability is achieved by modifications in synaptic weights related to decision making. Choice behavior has been empirically found to follow Herrnstein’s matching law. Loewenstein & Seung (2006) demonstrated that matching behavior is a steady state of learning in neural networks if the synaptic weights change proportionally to the covariance between reward and neural activities. However, their proof did not take into account the change in entire synaptic distributions. In this study, we show that matching behavior is not necessarily a steady state of the covariance-based learning rule when the synaptic strength is sufficiently strong so that the fluctuations in input from individual sensory neurons influence the net input to output neurons. This is caused by the increasing variance in the input potential due to the diffusion of synaptic weights. This effect causes an undermatching phenomenon, which has been observed in many behavioral experiments. We suggest that the synaptic diffusion effects provide a robust neural mechanism for stochastic choice behavior.